Spaces:
Runtime error
Runtime error
| from utils.dataset_utils import * | |
| # https://github.com/ExponentialML/Video-BLIP2-Preprocessor | |
| class VideoJsonDataset(Dataset): | |
| def __init__( | |
| self, | |
| tokenizer = None, | |
| width: int = 256, | |
| height: int = 256, | |
| n_sample_frames: int = 4, | |
| sample_start_idx: int = 1, | |
| frame_step: int = 1, | |
| json_path: str ="", | |
| json_data = None, | |
| vid_data_key: str = "video_path", | |
| preprocessed: bool = False, | |
| use_bucketing: bool = False, | |
| **kwargs | |
| ): | |
| self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg") | |
| self.use_bucketing = use_bucketing | |
| self.tokenizer = tokenizer | |
| self.preprocessed = preprocessed | |
| self.vid_data_key = vid_data_key | |
| self.train_data = self.load_from_json(json_path, json_data) | |
| self.width = width | |
| self.height = height | |
| self.n_sample_frames = n_sample_frames | |
| self.sample_start_idx = sample_start_idx | |
| self.frame_step = frame_step | |
| def build_json(self, json_data): | |
| extended_data = [] | |
| for data in json_data['data']: | |
| for nested_data in data['data']: | |
| self.build_json_dict( | |
| data, | |
| nested_data, | |
| extended_data | |
| ) | |
| json_data = extended_data | |
| return json_data | |
| def build_json_dict(self, data, nested_data, extended_data): | |
| clip_path = nested_data['clip_path'] if 'clip_path' in nested_data else None | |
| extended_data.append({ | |
| self.vid_data_key: data[self.vid_data_key], | |
| 'frame_index': nested_data['frame_index'], | |
| 'prompt': nested_data['prompt'], | |
| 'clip_path': clip_path | |
| }) | |
| def load_from_json(self, path, json_data): | |
| try: | |
| with open(path) as jpath: | |
| print(f"Loading JSON from {path}") | |
| json_data = json.load(jpath) | |
| return self.build_json(json_data) | |
| except: | |
| self.train_data = [] | |
| print("Non-existant JSON path. Skipping.") | |
| def validate_json(self, base_path, path): | |
| return os.path.exists(f"{base_path}/{path}") | |
| def get_frame_range(self, vr): | |
| return get_video_frames( | |
| vr, | |
| self.sample_start_idx, | |
| self.frame_step, | |
| self.n_sample_frames | |
| ) | |
| def get_vid_idx(self, vr, vid_data=None): | |
| frames = self.n_sample_frames | |
| if vid_data is not None: | |
| idx = vid_data['frame_index'] | |
| else: | |
| idx = self.sample_start_idx | |
| return idx | |
| def get_frame_buckets(self, vr): | |
| _, h, w = vr[0].shape | |
| width, height = sensible_buckets(self.width, self.height, h, w) | |
| # width, height = self.width, self.height | |
| resize = T.transforms.Resize((height, width), antialias=True) | |
| return resize | |
| def get_frame_batch(self, vr, resize=None): | |
| frame_range = self.get_frame_range(vr) | |
| frames = vr.get_batch(frame_range) | |
| video = rearrange(frames, "f h w c -> f c h w") | |
| if resize is not None: video = resize(video) | |
| return video | |
| def process_video_wrapper(self, vid_path): | |
| video, vr = process_video( | |
| vid_path, | |
| self.use_bucketing, | |
| self.width, | |
| self.height, | |
| self.get_frame_buckets, | |
| self.get_frame_batch | |
| ) | |
| return video, vr | |
| def train_data_batch(self, index): | |
| # If we are training on individual clips. | |
| if 'clip_path' in self.train_data[index] and \ | |
| self.train_data[index]['clip_path'] is not None: | |
| vid_data = self.train_data[index] | |
| clip_path = vid_data['clip_path'] | |
| # Get video prompt | |
| prompt = vid_data['prompt'] | |
| video, _ = self.process_video_wrapper(clip_path) | |
| prompt_ids = get_prompt_ids(prompt, self.tokenizer) | |
| return video, prompt, prompt_ids | |
| # Assign train data | |
| train_data = self.train_data[index] | |
| # Get the frame of the current index. | |
| self.sample_start_idx = train_data['frame_index'] | |
| # Initialize resize | |
| resize = None | |
| video, vr = self.process_video_wrapper(train_data[self.vid_data_key]) | |
| # Get video prompt | |
| prompt = train_data['prompt'] | |
| vr.seek(0) | |
| prompt_ids = get_prompt_ids(prompt, self.tokenizer) | |
| return video, prompt, prompt_ids | |
| def __getname__(): return 'json' | |
| def __len__(self): | |
| if self.train_data is not None: | |
| return len(self.train_data) | |
| else: | |
| return 0 | |
| def __getitem__(self, index): | |
| # Initialize variables | |
| video = None | |
| prompt = None | |
| prompt_ids = None | |
| # Use default JSON training | |
| if self.train_data is not None: | |
| video, prompt, prompt_ids = self.train_data_batch(index) | |
| example = { | |
| "pixel_values": (video / 127.5 - 1.0), | |
| "prompt_ids": prompt_ids[0], | |
| "text_prompt": prompt, | |
| 'dataset': self.__getname__() | |
| } | |
| return example |