Spaces:
Running
Running
| import torch | |
| from transformers import AutoTokenizer, AutoModelForMaskedLM | |
| import sys | |
| import os | |
| from text.japanese import text2sep_kata | |
| tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3") | |
| models = dict() | |
| def get_bert_feature(text, word2ph, device=None): | |
| sep_text,_ = text2sep_kata(text) | |
| sep_tokens = [tokenizer.tokenize(t) for t in sep_text] | |
| sep_ids = [tokenizer.convert_tokens_to_ids(t) for t in sep_tokens] | |
| sep_ids = [2]+[item for sublist in sep_ids for item in sublist]+[3] | |
| return get_bert_feature_with_token(sep_ids, word2ph, device) | |
| # def get_bert_feature(text, word2ph, device=None): | |
| # if ( | |
| # sys.platform == "darwin" | |
| # and torch.backends.mps.is_available() | |
| # and device == "cpu" | |
| # ): | |
| # device = "mps" | |
| # if not device: | |
| # device = "cuda" | |
| # if device not in models.keys(): | |
| # models[device] = AutoModelForMaskedLM.from_pretrained( | |
| # "cl-tohoku/bert-base-japanese-v3" | |
| # ).to(device) | |
| # with torch.no_grad(): | |
| # inputs = tokenizer(text, return_tensors="pt") | |
| # for i in inputs: | |
| # inputs[i] = inputs[i].to(device) | |
| # res = models[device](**inputs, output_hidden_states=True) | |
| # res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu() | |
| # assert inputs["input_ids"].shape[-1] == len(word2ph) | |
| # word2phone = word2ph | |
| # phone_level_feature = [] | |
| # for i in range(len(word2phone)): | |
| # repeat_feature = res[i].repeat(word2phone[i], 1) | |
| # phone_level_feature.append(repeat_feature) | |
| # phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
| # return phone_level_feature.T | |
| def get_bert_feature_with_token(tokens, word2ph, device=None): | |
| if ( | |
| sys.platform == "darwin" | |
| and torch.backends.mps.is_available() | |
| and device == "cpu" | |
| ): | |
| device = "mps" | |
| if not device: | |
| device = "cuda" | |
| if device not in models.keys(): | |
| models[device] = AutoModelForMaskedLM.from_pretrained( | |
| "./bert/bert-base-japanese-v3" | |
| ).to(device) | |
| with torch.no_grad(): | |
| inputs = torch.tensor(tokens).to(device).unsqueeze(0) | |
| token_type_ids = torch.zeros_like(inputs).to(device) | |
| attention_mask = torch.ones_like(inputs).to(device) | |
| inputs = {"input_ids": inputs, "token_type_ids": token_type_ids, "attention_mask": attention_mask} | |
| # for i in inputs: | |
| # inputs[i] = inputs[i].to(device) | |
| res = models[device](**inputs, output_hidden_states=True) | |
| res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu() | |
| assert inputs["input_ids"].shape[-1] == len(word2ph) | |
| word2phone = word2ph | |
| phone_level_feature = [] | |
| for i in range(len(word2phone)): | |
| repeat_feature = res[i].repeat(word2phone[i], 1) | |
| phone_level_feature.append(repeat_feature) | |
| phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
| return phone_level_feature.T | |
| if __name__ == "__main__": | |
| print(get_bert_feature("観覧車",[4,2])) | |
| pass |