Wording in the code example (#2)
Browse files- Wording in the code example (142aa16b4cb6ed9f02fa825b0f9f42bd6d8bb69e)
- Update README.md (7b41fafe0af25f1dee86c1bfad9db38ccf548381)
Co-authored-by: Apolinário from multimodal AI art <multimodalart@users.noreply.huggingface.co>
    	
        README.md
    CHANGED
    
    | 
         @@ -65,7 +65,9 @@ aesthetic prompts. Specifically, Stable Cascade (30 inference steps) was compare 
     | 
|
| 65 | 
         
             
            steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen v2 (30 inference steps).
         
     | 
| 66 | 
         | 
| 67 | 
         
             
            ## Code Example
         
     | 
| 68 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 69 | 
         
             
            ```shell
         
     | 
| 70 | 
         
             
            pip install git+https://github.com/kashif/diffusers.git@wuerstchen-v3
         
     | 
| 71 | 
         
             
            ```
         
     | 
| 
         @@ -75,31 +77,33 @@ import torch 
     | 
|
| 75 | 
         
             
            from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
         
     | 
| 76 | 
         | 
| 77 | 
         
             
            device = "cuda"
         
     | 
| 78 | 
         
            -
            dtype = torch.bfloat16
         
     | 
| 79 | 
         
             
            num_images_per_prompt = 2
         
     | 
| 80 | 
         | 
| 81 | 
         
            -
            prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype= 
     | 
| 82 | 
         
            -
            decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade",  torch_dtype= 
     | 
| 83 | 
         | 
| 84 | 
         
             
            prompt = "Anthropomorphic cat dressed as a pilot"
         
     | 
| 85 | 
         
             
            negative_prompt = ""
         
     | 
| 86 | 
         | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
                 
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
             
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
             
     | 
| 100 | 
         
            -
             
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 103 | 
         
             
            ```
         
     | 
| 104 | 
         | 
| 105 | 
         
             
            ## Uses
         
     | 
| 
         | 
|
| 65 | 
         
             
            steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen v2 (30 inference steps).
         
     | 
| 66 | 
         | 
| 67 | 
         
             
            ## Code Example
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            **⚠️ Important**: For the code below to work, you have to install `diffusers` from this branch while the PR is WIP.
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
             
            ```shell
         
     | 
| 72 | 
         
             
            pip install git+https://github.com/kashif/diffusers.git@wuerstchen-v3
         
     | 
| 73 | 
         
             
            ```
         
     | 
| 
         | 
|
| 77 | 
         
             
            from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
         
     | 
| 78 | 
         | 
| 79 | 
         
             
            device = "cuda"
         
     | 
| 
         | 
|
| 80 | 
         
             
            num_images_per_prompt = 2
         
     | 
| 81 | 
         | 
| 82 | 
         
            +
            prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
         
     | 
| 83 | 
         
            +
            decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade",  torch_dtype=torch.float16).to(device)
         
     | 
| 84 | 
         | 
| 85 | 
         
             
            prompt = "Anthropomorphic cat dressed as a pilot"
         
     | 
| 86 | 
         
             
            negative_prompt = ""
         
     | 
| 87 | 
         | 
| 88 | 
         
            +
            prior_output = prior(
         
     | 
| 89 | 
         
            +
                prompt=prompt,
         
     | 
| 90 | 
         
            +
                height=1024,
         
     | 
| 91 | 
         
            +
                width=1024,
         
     | 
| 92 | 
         
            +
                negative_prompt=negative_prompt,
         
     | 
| 93 | 
         
            +
                guidance_scale=4.0,
         
     | 
| 94 | 
         
            +
                num_images_per_prompt=num_images_per_prompt,
         
     | 
| 95 | 
         
            +
                num_inference_steps=20
         
     | 
| 96 | 
         
            +
            )
         
     | 
| 97 | 
         
            +
            decoder_output = decoder(
         
     | 
| 98 | 
         
            +
                image_embeddings=prior_output.image_embeddings.half(),
         
     | 
| 99 | 
         
            +
                prompt=prompt,
         
     | 
| 100 | 
         
            +
                negative_prompt=negative_prompt,
         
     | 
| 101 | 
         
            +
                guidance_scale=0.0,
         
     | 
| 102 | 
         
            +
                output_type="pil",
         
     | 
| 103 | 
         
            +
                num_inference_steps=10
         
     | 
| 104 | 
         
            +
            ).images
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
            #Now decoder_output is a list with your PIL images
         
     | 
| 107 | 
         
             
            ```
         
     | 
| 108 | 
         | 
| 109 | 
         
             
            ## Uses
         
     |