update config
Browse files- config.json +3 -3
- configuration_step1.py +41 -0
- modeling_step1.py +392 -0
    	
        config.json
    CHANGED
    
    | @@ -1,10 +1,10 @@ | |
| 1 | 
             
            {
         | 
| 2 | 
             
              "architectures": [
         | 
| 3 | 
            -
                " | 
| 4 | 
             
              ],
         | 
| 5 | 
             
              "auto_map": {
         | 
| 6 | 
            -
                "AutoConfig": " | 
| 7 | 
            -
                "AutoModelForCausalLM": " | 
| 8 | 
             
              },
         | 
| 9 | 
             
              "model_type": "step_audio",
         | 
| 10 | 
             
              "bos_token_id": 1,
         | 
|  | |
| 1 | 
             
            {
         | 
| 2 | 
             
              "architectures": [
         | 
| 3 | 
            +
                "Step1ForCausalLM"
         | 
| 4 | 
             
              ],
         | 
| 5 | 
             
              "auto_map": {
         | 
| 6 | 
            +
                "AutoConfig": "configuration_step1.Step1Config",
         | 
| 7 | 
            +
                "AutoModelForCausalLM": "modeling_step1.Step1ForCausalLM"
         | 
| 8 | 
             
              },
         | 
| 9 | 
             
              "model_type": "step_audio",
         | 
| 10 | 
             
              "bos_token_id": 1,
         | 
    	
        configuration_step1.py
    ADDED
    
    | @@ -0,0 +1,41 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Optional, List, Any, Dict
         | 
| 2 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            class Step1Config(PretrainedConfig):
         | 
| 7 | 
            +
                model_type = "step1"
         | 
| 8 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 9 | 
            +
                
         | 
| 10 | 
            +
                def __init__(
         | 
| 11 | 
            +
                    self,
         | 
| 12 | 
            +
                    hidden_size: int = 5120,
         | 
| 13 | 
            +
                    intermediate_size: int = 13312,
         | 
| 14 | 
            +
                    num_attention_heads: int = 40,
         | 
| 15 | 
            +
                    num_attention_groups: int = 8,
         | 
| 16 | 
            +
                    num_hidden_layers: int = 48,
         | 
| 17 | 
            +
                    max_seq_len: int = 4096,
         | 
| 18 | 
            +
                    vocab_size: int = 65536,
         | 
| 19 | 
            +
                    rms_norm_eps: float = 1e-5,
         | 
| 20 | 
            +
                    bos_token_id: int = 1,
         | 
| 21 | 
            +
                    eos_token_id: int = 3,
         | 
| 22 | 
            +
                    pad_token_id: int = 0,
         | 
| 23 | 
            +
                    **kwargs,
         | 
| 24 | 
            +
                ) -> None:
         | 
| 25 | 
            +
                    self.hidden_size = hidden_size
         | 
| 26 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 27 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 28 | 
            +
                    self.num_attention_groups = num_attention_groups
         | 
| 29 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 30 | 
            +
                    self.max_seq_len = max_seq_len
         | 
| 31 | 
            +
                    self.vocab_size = vocab_size
         | 
| 32 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 33 | 
            +
                    super().__init__(
         | 
| 34 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 35 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 36 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 37 | 
            +
                        **kwargs
         | 
| 38 | 
            +
                    )
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            __all__ = ["Step1Config"]
         | 
    	
        modeling_step1.py
    ADDED
    
    | @@ -0,0 +1,392 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import math
         | 
| 2 | 
            +
            from typing import Optional, Tuple, Union, List
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import torch.utils.checkpoint
         | 
| 6 | 
            +
            from torch import nn
         | 
| 7 | 
            +
            from transformers.generation import GenerationMixin
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 10 | 
            +
            from transformers.utils import logging
         | 
| 11 | 
            +
            from .configuration_step1 import Step1Config
         | 
| 12 | 
            +
            from transformers.cache_utils import Cache, DynamicCache
         | 
| 13 | 
            +
            from einops import rearrange
         | 
| 14 | 
            +
            from transformers.modeling_outputs import (
         | 
| 15 | 
            +
                BaseModelOutputWithPast,
         | 
| 16 | 
            +
                CausalLMOutputWithPast,
         | 
| 17 | 
            +
            )
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            def build_alibi_cache(block_size, n_heads, dtype, device):
         | 
| 23 | 
            +
                # get slopes
         | 
| 24 | 
            +
                n = 2 ** math.floor(math.log2(n_heads))  # nearest 2**n to n_heads
         | 
| 25 | 
            +
                m0 = 2.0 ** (-8.0 / n)
         | 
| 26 | 
            +
                # 2^(-8/n), 2^(-8*2/n), 2^(-8*3/n), ...
         | 
| 27 | 
            +
                slopes = torch.pow(m0, torch.arange(1, n + 1))
         | 
| 28 | 
            +
                if n < n_heads:
         | 
| 29 | 
            +
                    m1 = 2.0 ** (-4.0 / n)
         | 
| 30 | 
            +
                    # 2^(-8/(2n)), 2^(-8*3/(2n)), 2^(-8*5/(2n)), ...
         | 
| 31 | 
            +
                    mm = torch.pow(m1, torch.arange(1, 1 + 2 * (n_heads - n), 2))
         | 
| 32 | 
            +
                    slopes = torch.cat([slopes, mm])
         | 
| 33 | 
            +
                slopes = slopes.to(device)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                tril = torch.tril(torch.ones(1, 1, block_size, block_size, device=device))
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                bias_rows = torch.arange(block_size, device=device).view(1, -1)
         | 
| 38 | 
            +
                bias_cols = torch.arange(block_size, device=device).view(-1, 1)
         | 
| 39 | 
            +
                bias = -torch.sqrt(bias_cols - bias_rows)
         | 
| 40 | 
            +
                bias = bias.view(1, block_size, block_size) * slopes.view(-1, 1, 1)
         | 
| 41 | 
            +
                bias = bias.masked_fill(tril == 0, float("-inf"))
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                return bias.type(dtype)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            class StepRMSNorm(torch.nn.Module):
         | 
| 47 | 
            +
                def __init__(self, hidden_size, eps=1e-5):
         | 
| 48 | 
            +
                    super().__init__()
         | 
| 49 | 
            +
                    self.weight = torch.nn.Parameter(torch.ones(hidden_size))
         | 
| 50 | 
            +
                    self.eps = eps
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                def forward(self, x: torch.Tensor):
         | 
| 53 | 
            +
                    var = x.float().pow(2).mean(-1, keepdim=True)
         | 
| 54 | 
            +
                    x = x * torch.rsqrt(var + self.eps).to(x.dtype)
         | 
| 55 | 
            +
                    x = x * self.weight
         | 
| 56 | 
            +
                    return x
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            class StepAttention(torch.nn.Module):
         | 
| 60 | 
            +
                def __init__(self, hidden_size, num_heads, num_groups, layer_idx: int):
         | 
| 61 | 
            +
                    super().__init__()
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    self.num_heads = num_heads
         | 
| 64 | 
            +
                    self.num_groups = num_groups
         | 
| 65 | 
            +
                    self.hidden_size = hidden_size
         | 
| 66 | 
            +
                    self.head_dim = hidden_size // num_heads
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    self.q_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
         | 
| 69 | 
            +
                    self.k_proj = torch.nn.Linear(
         | 
| 70 | 
            +
                        hidden_size, num_groups * self.head_dim, bias=False
         | 
| 71 | 
            +
                    )
         | 
| 72 | 
            +
                    self.v_proj = torch.nn.Linear(
         | 
| 73 | 
            +
                        hidden_size, num_groups * self.head_dim, bias=False
         | 
| 74 | 
            +
                    )
         | 
| 75 | 
            +
                    self.o_proj = torch.nn.Linear(hidden_size, hidden_size, bias=False)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                    self.layer_idx = layer_idx
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                def forward(
         | 
| 80 | 
            +
                    self,
         | 
| 81 | 
            +
                    x: torch.Tensor,
         | 
| 82 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 83 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 84 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 85 | 
            +
                ):
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    q: torch.Tensor = self.q_proj(x)
         | 
| 88 | 
            +
                    k: torch.Tensor = self.k_proj(x)
         | 
| 89 | 
            +
                    v: torch.Tensor = self.v_proj(x)
         | 
| 90 | 
            +
                    if past_key_value is not None:
         | 
| 91 | 
            +
                        cache_kwargs = {"cache_position": cache_position}
         | 
| 92 | 
            +
                        k, v = past_key_value.update(k, v, self.layer_idx, cache_kwargs)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    q = rearrange(q, "b s (h d) -> b s h d", h=self.num_heads)
         | 
| 95 | 
            +
                    k = rearrange(k, "b s (g d) -> b s g d", g=self.num_groups)
         | 
| 96 | 
            +
                    v = rearrange(v, "b s (g d) -> b s g d", g=self.num_groups)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    k = k.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
         | 
| 99 | 
            +
                    v = v.repeat_interleave(self.num_heads // self.num_groups, dim=-2)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    attention_mask = build_alibi_cache(
         | 
| 102 | 
            +
                        k.size(1), self.num_heads, dtype=q.dtype, device=q.device
         | 
| 103 | 
            +
                    )[:, :, -q.size(1) :, :].contiguous()
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    q = q.transpose(1, 2)
         | 
| 106 | 
            +
                    k = k.transpose(1, 2)
         | 
| 107 | 
            +
                    v = v.transpose(1, 2)
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                    o: torch.Tensor = torch.nn.functional.scaled_dot_product_attention(
         | 
| 110 | 
            +
                        q, k, v, attn_mask=attention_mask
         | 
| 111 | 
            +
                    )
         | 
| 112 | 
            +
                    o = o.transpose(1, 2).flatten(-2, -1)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    o = self.o_proj(o)
         | 
| 115 | 
            +
                    return o
         | 
| 116 | 
            +
             | 
| 117 | 
            +
             | 
| 118 | 
            +
            class StepMLP(torch.nn.Module):
         | 
| 119 | 
            +
                def __init__(self, hidden_size, intermediate_size):
         | 
| 120 | 
            +
                    super().__init__()
         | 
| 121 | 
            +
                    self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
         | 
| 122 | 
            +
                    self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
         | 
| 123 | 
            +
                    self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                def forward(self, x):
         | 
| 126 | 
            +
                    gate = self.gate_proj(x)
         | 
| 127 | 
            +
                    up = self.up_proj(x)
         | 
| 128 | 
            +
                    x = torch.nn.functional.silu(gate) * up
         | 
| 129 | 
            +
                    x = self.down_proj(x)
         | 
| 130 | 
            +
                    return x
         | 
| 131 | 
            +
             | 
| 132 | 
            +
             | 
| 133 | 
            +
            class StepLayer(torch.nn.Module):
         | 
| 134 | 
            +
                def __init__(self, config: Step1Config, layer_idx: int):
         | 
| 135 | 
            +
                    super().__init__()
         | 
| 136 | 
            +
                    self.layer_idx = layer_idx
         | 
| 137 | 
            +
                    self.self_attn = StepAttention(
         | 
| 138 | 
            +
                        hidden_size=config.hidden_size,
         | 
| 139 | 
            +
                        num_heads=config.num_attention_heads,
         | 
| 140 | 
            +
                        num_groups=config.num_attention_groups,
         | 
| 141 | 
            +
                        layer_idx=layer_idx,
         | 
| 142 | 
            +
                    )
         | 
| 143 | 
            +
                    self.mlp = StepMLP(
         | 
| 144 | 
            +
                        hidden_size=config.hidden_size,
         | 
| 145 | 
            +
                        intermediate_size=config.intermediate_size,
         | 
| 146 | 
            +
                    )
         | 
| 147 | 
            +
                    self.input_layernorm = StepRMSNorm(
         | 
| 148 | 
            +
                        hidden_size=config.hidden_size, eps=config.rms_norm_eps
         | 
| 149 | 
            +
                    )
         | 
| 150 | 
            +
                    self.post_attention_layernorm = StepRMSNorm(
         | 
| 151 | 
            +
                        hidden_size=config.hidden_size, eps=config.rms_norm_eps
         | 
| 152 | 
            +
                    )
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                def forward(
         | 
| 155 | 
            +
                    self,
         | 
| 156 | 
            +
                    x,
         | 
| 157 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 158 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 159 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 160 | 
            +
                ):
         | 
| 161 | 
            +
                    def f(x):
         | 
| 162 | 
            +
                        x = self.input_layernorm(x)
         | 
| 163 | 
            +
                        x = self.self_attn(x, past_key_value, attention_mask, cache_position)
         | 
| 164 | 
            +
                        return x
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    x = x + f(x)
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    def f(x):
         | 
| 169 | 
            +
                        x = self.post_attention_layernorm(x)
         | 
| 170 | 
            +
                        x = self.mlp(x)
         | 
| 171 | 
            +
                        return x
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    x = x + f(x)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    return x
         | 
| 176 | 
            +
             | 
| 177 | 
            +
             | 
| 178 | 
            +
            class StepPreTrainedModel(PreTrainedModel):
         | 
| 179 | 
            +
                config_class = Step1Config
         | 
| 180 | 
            +
                base_model_prefix = "model"
         | 
| 181 | 
            +
                supports_gradient_checkpointing = True
         | 
| 182 | 
            +
                _no_split_modules = ["StepLayer"]
         | 
| 183 | 
            +
                _skip_keys_device_placement = ["past_key_values"]
         | 
| 184 | 
            +
                _supports_cache_class = True
         | 
| 185 | 
            +
                _supports_static_cache = True
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                def _init_weights(self, module):
         | 
| 188 | 
            +
                    std = self.config.initializer_range
         | 
| 189 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 190 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 191 | 
            +
                        if module.bias is not None:
         | 
| 192 | 
            +
                            module.bias.data.zero_()
         | 
| 193 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 194 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 195 | 
            +
                        if module.padding_idx is not None:
         | 
| 196 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 197 | 
            +
             | 
| 198 | 
            +
             | 
| 199 | 
            +
            class Step1Model(StepPreTrainedModel):
         | 
| 200 | 
            +
                """
         | 
| 201 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                Args:
         | 
| 204 | 
            +
                    config: Step1Config
         | 
| 205 | 
            +
                """
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                def __init__(self, config: Step1Config):
         | 
| 208 | 
            +
                    super().__init__(config)
         | 
| 209 | 
            +
                    self.config = config
         | 
| 210 | 
            +
                    self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    self.layers = torch.nn.Sequential(
         | 
| 213 | 
            +
                        *[
         | 
| 214 | 
            +
                            StepLayer(config, layer_idx)
         | 
| 215 | 
            +
                            for layer_idx in range(config.num_hidden_layers)
         | 
| 216 | 
            +
                        ]
         | 
| 217 | 
            +
                    )
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    self.norm = StepRMSNorm(
         | 
| 220 | 
            +
                        hidden_size=config.hidden_size, eps=config.rms_norm_eps
         | 
| 221 | 
            +
                    )
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    # Initialize weights and apply final processing
         | 
| 224 | 
            +
                    self.post_init()
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                def get_input_embeddings(self):
         | 
| 227 | 
            +
                    return self.embed_tokens
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                def set_input_embeddings(self, value):
         | 
| 230 | 
            +
                    self.embed_tokens = value
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                def forward(
         | 
| 233 | 
            +
                    self,
         | 
| 234 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 235 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 236 | 
            +
                    past_key_values: Optional[Cache] = None,
         | 
| 237 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 238 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 239 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 240 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 241 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 242 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 243 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 244 | 
            +
                    output_attentions = False
         | 
| 245 | 
            +
                    output_hidden_states = False
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 248 | 
            +
                    return_dict = (
         | 
| 249 | 
            +
                        return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 250 | 
            +
                    )
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 253 | 
            +
                        raise ValueError(
         | 
| 254 | 
            +
                            "You must specify exactly one of input_ids or inputs_embeds"
         | 
| 255 | 
            +
                        )
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    if inputs_embeds is None:
         | 
| 258 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    if use_cache and past_key_values is None:
         | 
| 261 | 
            +
                        past_key_values = DynamicCache()
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                    if cache_position is None:
         | 
| 264 | 
            +
                        past_seen_tokens = (
         | 
| 265 | 
            +
                            past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 266 | 
            +
                        )
         | 
| 267 | 
            +
                        cache_position = torch.arange(
         | 
| 268 | 
            +
                            past_seen_tokens,
         | 
| 269 | 
            +
                            past_seen_tokens + inputs_embeds.shape[1],
         | 
| 270 | 
            +
                            device=inputs_embeds.device,
         | 
| 271 | 
            +
                        )
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    causal_mask = attention_mask
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    hidden_states = inputs_embeds
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                    for decoder_layer in self.layers[: self.config.num_hidden_layers]:
         | 
| 278 | 
            +
                        layer_outputs = decoder_layer(
         | 
| 279 | 
            +
                            hidden_states,
         | 
| 280 | 
            +
                            attention_mask=causal_mask,
         | 
| 281 | 
            +
                            past_key_value=past_key_values,
         | 
| 282 | 
            +
                            cache_position=cache_position,
         | 
| 283 | 
            +
                        )
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                        hidden_states = layer_outputs
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    output = BaseModelOutputWithPast(
         | 
| 290 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 291 | 
            +
                        past_key_values=past_key_values if use_cache else None,
         | 
| 292 | 
            +
                        hidden_states=hidden_states,
         | 
| 293 | 
            +
                        attentions=None,
         | 
| 294 | 
            +
                    )
         | 
| 295 | 
            +
                    return output if return_dict else output.to_tuple()
         | 
| 296 | 
            +
             | 
| 297 | 
            +
             | 
| 298 | 
            +
            class Step1ForCausalLM(StepPreTrainedModel, GenerationMixin):
         | 
| 299 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                def __init__(self, config):
         | 
| 302 | 
            +
                    super().__init__(config)
         | 
| 303 | 
            +
                    self.model = Step1Model(config)
         | 
| 304 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 305 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    # Initialize weights and apply final processing
         | 
| 308 | 
            +
                    self.post_init()
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                def get_input_embeddings(self):
         | 
| 311 | 
            +
                    return self.model.embed_tokens
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                def set_input_embeddings(self, value):
         | 
| 314 | 
            +
                    self.model.embed_tokens = value
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                # def get_output_embeddings(self):
         | 
| 317 | 
            +
                #     return self.lm_head
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                # def set_output_embeddings(self, new_embeddings):
         | 
| 320 | 
            +
                #     self.lm_head = new_embeddings
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                def set_decoder(self, decoder):
         | 
| 323 | 
            +
                    self.model = decoder
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                def get_decoder(self):
         | 
| 326 | 
            +
                    return self.model
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                def forward(
         | 
| 329 | 
            +
                    self,
         | 
| 330 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 331 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 332 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 333 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 334 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 335 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 336 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 337 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 338 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 339 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 340 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 341 | 
            +
                    num_logits_to_keep: int = 0,
         | 
| 342 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 343 | 
            +
                    # output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 344 | 
            +
                    output_attentions = False
         | 
| 345 | 
            +
                    output_hidden_states = False
         | 
| 346 | 
            +
                    # output_hidden_states = (
         | 
| 347 | 
            +
                    #     output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 348 | 
            +
                    # )
         | 
| 349 | 
            +
                    return_dict = (
         | 
| 350 | 
            +
                        return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 351 | 
            +
                    )
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 354 | 
            +
                    outputs = self.model(
         | 
| 355 | 
            +
                        input_ids=input_ids,
         | 
| 356 | 
            +
                        attention_mask=attention_mask,
         | 
| 357 | 
            +
                        past_key_values=past_key_values,
         | 
| 358 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 359 | 
            +
                        use_cache=use_cache,
         | 
| 360 | 
            +
                        output_attentions=output_attentions,
         | 
| 361 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 362 | 
            +
                        return_dict=return_dict,
         | 
| 363 | 
            +
                        cache_position=cache_position,
         | 
| 364 | 
            +
                    )
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                    hidden_states = outputs[0]
         | 
| 367 | 
            +
                    # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                    logits = self.lm_head(hidden_states)
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                    # logits = torch.matmul(hidden_states, lm_stat)
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    loss = None
         | 
| 374 | 
            +
                    if labels is not None:
         | 
| 375 | 
            +
                        loss = self.loss_function(
         | 
| 376 | 
            +
                            logits=logits,
         | 
| 377 | 
            +
                            labels=labels,
         | 
| 378 | 
            +
                            vocab_size=self.config.vocab_size,
         | 
| 379 | 
            +
                            **kwargs
         | 
| 380 | 
            +
                        )
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                    if not return_dict:
         | 
| 383 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 384 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 387 | 
            +
                        loss=loss,
         | 
| 388 | 
            +
                        logits=logits,
         | 
| 389 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 390 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 391 | 
            +
                        attentions=outputs.attentions,
         | 
| 392 | 
            +
                    )
         | 

