--- license: llama3 library_name: peft tags: - axolotl - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B model-index: - name: isafpr-llama3-lora-templatefree results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false data_seed: 42 seed: 42 datasets: - path: data/templatefree_isaf_press_releases_ft_train.jsonl type: input_output dataset_prepared_path: val_set_size: 0.1 output_dir: ./outputs/llama3/lora-out-templatefree hub_model_id: strickvl/isafpr-llama3-lora-templatefree sequence_len: 1024 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head wandb_project: isaf_pr_ft wandb_entity: strickvl wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" pad_token: <|end_of_text|> ```

# isafpr-llama3-lora-templatefree This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1433 | 0.0071 | 1 | 2.1450 | | 0.0712 | 0.25 | 35 | 0.0669 | | 0.0549 | 0.5 | 70 | 0.0517 | | 0.0585 | 0.75 | 105 | 0.0479 | | 0.0452 | 1.0 | 140 | 0.0482 | | 0.0244 | 1.2339 | 175 | 0.0473 | | 0.0287 | 1.4839 | 210 | 0.0447 | | 0.017 | 1.7339 | 245 | 0.0417 | | 0.0107 | 1.9839 | 280 | 0.0408 | | 0.0151 | 2.2143 | 315 | 0.0414 | | 0.0134 | 2.4643 | 350 | 0.0415 | | 0.0067 | 2.7143 | 385 | 0.0407 | | 0.0089 | 2.9643 | 420 | 0.0399 | | 0.0092 | 3.1929 | 455 | 0.0421 | | 0.007 | 3.4429 | 490 | 0.0429 | | 0.0065 | 3.6929 | 525 | 0.0428 | | 0.0125 | 3.9429 | 560 | 0.0428 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1