---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model-index:
- name: isafpr-tiny-llama-lora
  results: []
---
[ ](https://github.com/OpenAccess-AI-Collective/axolotl)
](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
data_seed: 42
seed: 42
datasets:
  - path: data/isaf_press_releases_ft.jsonl
    conversation: alpaca
    type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/tiny-llama/lora-out
hub_model_id: strickvl/isafpr-tiny-llama-lora
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: isaf_pr_ft
wandb_entity: strickvl
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# isafpr-tiny-llama-lora
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0557
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7724        | 0.0303 | 1    | 1.7779          |
| 1.2158        | 0.2727 | 9    | 1.0692          |
| 0.2116        | 0.5455 | 18   | 0.1796          |
| 0.1051        | 0.8182 | 27   | 0.1048          |
| 0.0762        | 1.0227 | 36   | 0.0859          |
| 0.0704        | 1.2955 | 45   | 0.0763          |
| 0.0661        | 1.5682 | 54   | 0.0692          |
| 0.073         | 1.8409 | 63   | 0.0646          |
| 0.0625        | 2.0455 | 72   | 0.0621          |
| 0.0522        | 2.3182 | 81   | 0.0602          |
| 0.0472        | 2.5909 | 90   | 0.0580          |
| 0.0545        | 2.8636 | 99   | 0.0571          |
| 0.0467        | 3.0682 | 108  | 0.0561          |
| 0.057         | 3.3409 | 117  | 0.0557          |
| 0.0477        | 3.6136 | 126  | 0.0557          |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1