Update README.md
Browse files
README.md
CHANGED
|
@@ -1,5 +1,279 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: other
|
| 3 |
-
license_name: tencent-hunyuan-a13b
|
| 4 |
-
license_link: LICENSE
|
| 5 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: tencent-hunyuan-a13b
|
| 4 |
+
license_link: LICENSE
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
<p align="center">
|
| 10 |
+
<img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
|
| 11 |
+
</p><p></p>
|
| 12 |
+
|
| 13 |
+
<p align="center">
|
| 14 |
+
 <a href="https://github.com/Tencent/Hunyuan-A13B"><b>GITHUB</b></a>  
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## Model Introduction
|
| 18 |
+
|
| 19 |
+
The A13B models released by Tencent Hunyuan this time: [Tencent-Hunyuan-A13B-Pretrain](https://huggingface.co/tencent/Hunyuan-A13B-Pretrain) , [Tencent-Hunyuan-A13B-Instruct](https://huggingface.co/tencent/Hunyuan-A13B-Instruct) , [Tencent-Hunyuan-A13B-Instruct-FP8](https://huggingface.co/tencent/Tencent-Hunyuan-A13B-Instruct-FP8) and [Tencent-Hunyuan-A13B-Instruct-FP8](https://huggingface.co/tencent/Tencent-Hunyuan-A13B-Instruct-FP8), use better data allocation and training, have strong performance, and have achieved a good balance between computing and performance. It stands out from many large-scale language models and is currently one of the strongest Chinese Mixture of Experts (MoE) models, featuring a total of 80 billion parameters and 13 billion active parameters.
|
| 20 |
+
|
| 21 |
+
### Introduction to Technical Advantages
|
| 22 |
+
|
| 23 |
+
**Model**
|
| 24 |
+
|
| 25 |
+
- **High-Quality Synthetic Data**: By enhancing training with synthetic data, Hunyuan-A13B is able to learn richer representations, handle long-context inputs, and generalize better to unseen data.
|
| 26 |
+
|
| 27 |
+
- **KV Cache Compression**: Utilizing Grouped Query Attention (GQA) and Cross-Layer Attention (CLA) strategies, it significantly reduces memory usage and computational overhead of the KV cache, thereby improving inference throughput.
|
| 28 |
+
|
| 29 |
+
- **Expert-Specific Learning Rate Scaling**: Different learning rates are assigned to different experts, ensuring that each sub-model can effectively learn from the data and contribute to overall performance.
|
| 30 |
+
|
| 31 |
+
- **Long-Context Processing Capability**: Both the pre-trained model and the instruction-tuned model support text sequences of up to 256K tokens, significantly enhancing the ability to handle long-context tasks.
|
| 32 |
+
|
| 33 |
+
- **Extensive Benchmarking**: Extensive experiments across multiple languages and tasks have validated the practical effectiveness and safety of Hunyuan-A13B.
|
| 34 |
+
|
| 35 |
+
- **Hybrid Reasoning Capability**: It supports both fast thinking and slow thinking inference modes.
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
**Architecture**
|
| 40 |
+
|
| 41 |
+
Hunyuan-A13B adopts a Fine-grained Mixture of Experts (Fine-grained MoE) architecture, comprising a total of 80 billion parameters with 13 billion active parameters. The model has been trained on over 20 trillion tokens. It supports a context length of up to 256K tokens. The following are the detailed specifications of the model architecture:
|
| 42 |
+
|
| 43 |
+
- **Total Parameters**: 80B
|
| 44 |
+
- **Active Parameters**: 13B
|
| 45 |
+
- **Number of Layers**: 32
|
| 46 |
+
- **Attention Heads**: 32
|
| 47 |
+
- **Number of Shared Experts**: 1
|
| 48 |
+
- **Number of Non-Shared Experts**: 64
|
| 49 |
+
- **Routing Strategy**: Top-8
|
| 50 |
+
- **Activation Function**: SwiGLU
|
| 51 |
+
- **Hidden Layer Dimension**: 4096
|
| 52 |
+
- **Expert Hidden Layer Dimension**: 3072
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
## Related News
|
| 58 |
+
* 2025.6.27 We have open-sourced **Hunyuan-A13B-Pretrain** , **Hunyuan-A13B-Instruct** , **Hunyuan-A13B-Instruct-FP8** , **Hunyuan-A13B-Instruct** on Hugging Face.
|
| 59 |
+
<br>
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
## Benchmark
|
| 63 |
+
|
| 64 |
+
Note: The following benchmarks are evaluated by TRT-LLM-backend
|
| 65 |
+
|
| 66 |
+
| Model | Hunyuan-Large | Qwen2.5-72B | Qwen3-32B | Qwen3-A22B | Hunyuan-A13B |
|
| 67 |
+
|------------------|---------------|--------------|---------------|-------------|---------------|
|
| 68 |
+
| MMLU | 88.4 | 86.1 | 83.61 | 87.81 | 88.17 |
|
| 69 |
+
| MMLU-Pro | 60.20 | 58.10 | 65.54 | 68.18 | 67.23 |
|
| 70 |
+
| MMLU-Redux | 87.47 | 83.90 | 83.41 | 87.40 | 87.67 |
|
| 71 |
+
| BBH | 86.30 | 85.8 | 87.38 | 88.87 | 87.56 |
|
| 72 |
+
| SuperGPQA | 38.90 | 37.84 * | 39.78 | 44.06 | 41.32 |
|
| 73 |
+
| EvalPlus | 75.69 | 66.05 | 72.05 | 77.60 | 78.64 |
|
| 74 |
+
| MultiPL-E | 59.13 | 61.00 | 67.06 | 65.94 | 69.33 |
|
| 75 |
+
| MBPP | 72.60 | 84.70 | 78.20 | 81.40 | 83.86 |
|
| 76 |
+
| CRUX-O | 60.63 | 56.00 * | 72.50 | 79.00 | 77.00 |
|
| 77 |
+
| MATH | 69.80 | 62.1 | 61.62 | 71.84 | 72.35 |
|
| 78 |
+
| GSM8k | 92.80 | 91.5 | 93.40 | 94.39 | 91.83 |
|
| 79 |
+
| GPQA | - | 45.9 | 47.97 | 47.47 | 43.44 |
|
| 80 |
+
| INCLUDE | 66.48 | 76.98 * | 67.97 | 73.46 | 74.90 |
|
| 81 |
+
| MGSM | 67.52 | 79.53 * | 82.68 | 83.53 | 76.00 |
|
| 82 |
+
| MMMLU | 76.89 | 79.28 * | 83.83 | 86.70 | 84.68 |
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
| Topic | Bench | OpenAI-o1-1217 | DeepSeek R1 | Qwen3-A22B | Hunyuan-A13B-Instruct |
|
| 89 |
+
|:-------------------:|:-----------------------------:|:-------------:|:------------:|:-----------:|:---------------------:|
|
| 90 |
+
| **Mathematics** | AIME 2024<br>AIME 2025<br>MATH | 74.3<br>79.2<br>96.4 | 79.8<br>70<br>94.9 | 85.7<br>81.5<br>94.0 | 87.3<br>76.8<br>94.3 |
|
| 91 |
+
| **Science** | GPQA-Diamond<br>OlympiadBench | 78<br>83.1 | 71.5<br>82.4 | 71.1<br>85.7 | 71.2<br>82.7 |
|
| 92 |
+
| **Coding** | Livecodebench<br>Fullstackbench<br>ArtifactsBench | 63.9<br>64.6<br>38.6 | 65.9<br>71.6<br>44.6 | 70.7<br>65.6<br>44.6 | 63.9<br>67.8<br>43 |
|
| 93 |
+
| **Reasoning** | BBH<br>DROP<br>ZebraLogic | 80.4<br>90.2<br>81 | 83.7<br>92.2<br>78.7 | 88.9<br>90.3<br>80.3 | 89.1<br>91.1<br>84.7 |
|
| 94 |
+
| **Instruction<br>Following** | IF-Eval<br>SysBench | 91.8<br>82.5 | 88.3<br>77.7 | 83.4<br>74.2 | 84.7<br>76.1 |
|
| 95 |
+
| **Text<br>Creation**| LengthCtrl<br>InsCtrl | 60.1<br>74.8 | 55.9<br>69 | 53.3<br>73.7 | 55.4<br>71.9 |
|
| 96 |
+
| **NLU** | ComplexNLU<br>Word-Task | 64.7<br>67.1 | 64.5<br>81.8 | 59.8<br>56.4 | 61.2<br>62.9 |
|
| 97 |
+
| **Agent** | BDCL v3<br> $\tau$-bench<br>ComplexFuncBench<br> $C^3$-Bench | 67.8<br>60.4<br>47.6<br>58.8 | 63.8<br>58.7<br>n/a<br>55.3 | 70.8<br>46.7<br>n/a<br>51.7 | 78.3<br>54.7<br>51.2<br>63.5 |
|
| 98 |
+
| **Average** | - | n/a | n/a | n/a | n/a |
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
## Quick Start
|
| 105 |
+
|
| 106 |
+
You can refer to the content in [Hunyuan-A13B](https://github.com/Tencent-Hunyuan/Hunyuan-A13B) to get started quickly. The training and inference code can use the version provided in this github repository.
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
### Transformer
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 113 |
+
import os
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def main():
|
| 117 |
+
model_name_or_path = os.environ['MODEL_PATH']
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
| 121 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto",
|
| 122 |
+
trust_remote_code=True) # You may want to use bfloat16 and/or move to GPU here
|
| 123 |
+
for name, param in model.named_parameters():
|
| 124 |
+
print(f"{name}: {param.size()}")
|
| 125 |
+
messages = [
|
| 126 |
+
{
|
| 127 |
+
"role": "system",
|
| 128 |
+
"content": "You are a helpful assistant.",
|
| 129 |
+
},
|
| 130 |
+
{"role": "user", "content": "Write a short summary of the benefits of regular exercise."},
|
| 131 |
+
]
|
| 132 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
| 133 |
+
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=100,do_sample=True)
|
| 134 |
+
print(tokenizer.decode(outputs[0]))
|
| 135 |
+
|
| 136 |
+
if __name__ == '__main__':
|
| 137 |
+
main()
|
| 138 |
+
|
| 139 |
+
```
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
## Deployment
|
| 143 |
+
|
| 144 |
+
For deployment, you can use frameworks such as *vLLM*, *SGLang*, or *TensorRT-LLM* to serve the model and create an OpenAI-compatible API endpoint.
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
### vllm
|
| 148 |
+
|
| 149 |
+
#### Docker Image
|
| 150 |
+
We provide a pre-built Docker image containing vLLM 0.8.5 with full support for this model. The official support is currently under development.
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
- To get started:
|
| 154 |
+
```
|
| 155 |
+
Pull the Docker image:docker pull xxx
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
- Start the API server:
|
| 159 |
+
|
| 160 |
+
```
|
| 161 |
+
docker start xxx
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
#### Source Code
|
| 166 |
+
|
| 167 |
+
Support for this model has been added via this PR: (https://github.com/vllm-project/vllm/pull/20114 )in the vLLM project.
|
| 168 |
+
You can build and run vLLM from source after merging this pull request into your local repository.
|
| 169 |
+
|
| 170 |
+
After applying the changes, you can start the API server by following the standard vLLM setup instructions.
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
### SGLlang
|
| 174 |
+
|
| 175 |
+
#### Docker Image
|
| 176 |
+
|
| 177 |
+
We also provide a pre-built Docker image based on the latest version of SGLang.
|
| 178 |
+
|
| 179 |
+
To get started:
|
| 180 |
+
|
| 181 |
+
- Pull the Docker image
|
| 182 |
+
|
| 183 |
+
```
|
| 184 |
+
docker pull xxx
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
- Start the API server:
|
| 188 |
+
|
| 189 |
+
```
|
| 190 |
+
docker run --gpus all \
|
| 191 |
+
--shm-size 32g \
|
| 192 |
+
-p 30000:30000 \
|
| 193 |
+
--ipc=host \
|
| 194 |
+
xxx \
|
| 195 |
+
python3 -m sglang.launch_server --model-path hunyuan/huanyuan_A13B --tp 4 --trust-remote-code --host 0.0.0.0 --port 30000
|
| 196 |
+
```
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
#### Source Code
|
| 200 |
+
|
| 201 |
+
The necessary integration has already been merged into the main branch via this PR(https://github.com/sgl-project/sglang/pull/7549 ).
|
| 202 |
+
Once you have cloned or updated your local SGLang repository, you can build and run the API server using the standard SGLang setup process.
|
| 203 |
+
|
| 204 |
+
After applying the changes, you can start the API server by following the standard SGLang setup instructions.
|
| 205 |
+
|
| 206 |
+
```
|
| 207 |
+
python3 -m sglang.launch_server --model-path hunyuan/huanyuan_A13B --tp 4 --trust-remote-code --host 0.0.0.0 --port 30000
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
### TensorRT-LLM
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
#### Docker Image
|
| 216 |
+
|
| 217 |
+
We also provide a pre-built Docker image based on the latest version of TensorRT-LLM.
|
| 218 |
+
|
| 219 |
+
To get started:
|
| 220 |
+
|
| 221 |
+
- Pull the Docker image
|
| 222 |
+
|
| 223 |
+
```
|
| 224 |
+
docker pull xxx
|
| 225 |
+
```
|
| 226 |
+
|
| 227 |
+
- Start the API server:
|
| 228 |
+
|
| 229 |
+
```
|
| 230 |
+
docker run --gpus all \
|
| 231 |
+
--shm-size 32g \
|
| 232 |
+
-p 30000:30000 \
|
| 233 |
+
--ipc=host \
|
| 234 |
+
xxx \
|
| 235 |
+
python3 -m sglang.launch_server --model-path hunyuan/huanyuan_A13B --tp 4 --trust-remote-code --host 0.0.0.0 --port 30000
|
| 236 |
+
```
|
| 237 |
+
|
| 238 |
+
#### Source Code
|
| 239 |
+
|
| 240 |
+
The necessary integration has already been merged into the main branch via this PR(xxx ).
|
| 241 |
+
Once you have cloned or updated your local TensorRT-LLM. repository, you can build and run the API server using the standard TensorRT-LLM. setup process.
|
| 242 |
+
|
| 243 |
+
After applying the changes, you can start the API server by following the standard TensorRT-LLM. setup instructions.
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
## Inference Performance
|
| 248 |
+
|
| 249 |
+
This section presents the efficiency test results of deploying various models using vLLM, including inference speed (tokens/s) under different batch sizes.
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
Evaluation Script:
|
| 253 |
+
```python
|
| 254 |
+
python3 benchmark_throughput.py --backend vllm \
|
| 255 |
+
--input-len 2048 \
|
| 256 |
+
--output-len 14336 \
|
| 257 |
+
--model $MODEL_PATH \
|
| 258 |
+
--tensor-parallel-size $TP \
|
| 259 |
+
--use-v2-block-manager \
|
| 260 |
+
--async-engine \
|
| 261 |
+
--trust-remote-code \
|
| 262 |
+
--num_prompts $BATCH_SIZE \
|
| 263 |
+
--max-num-seqs $BATCH_SIZE
|
| 264 |
+
```
|
| 265 |
+
|
| 266 |
+
| Inference Framework | Model | Number of GPUs (GPU productA) | input_length | batch=1 | batch=16 | batch=32 |
|
| 267 |
+
|------|-----------------------------|-----------|-------------------------|---------------------|----------------------|----------------------|
|
| 268 |
+
| vLLM | Hunyuan-A13B-Instruct | 8 | 2048 | 190.84 | 1246.54 | 1981.99 |
|
| 269 |
+
| vLLM | Hunyuan-A13B-Instruct | 4 | 2048 | 158.90 | 779.10 | 1301.75 |
|
| 270 |
+
| vLLM | Hunyuan-A13B-Instruct | 2 | 2048 | 111.72 | 327.31 | 346.54 |
|
| 271 |
+
| vLLM | Hunyuan-A13B-Instruct(int8 weight only) | 2 | 2048 | 109.10 | 444.17 | 721.93 |
|
| 272 |
+
| vLLM | Hunyuan-A13B-Instruct(W8A8C8-FP8) | 2 | 2048 | 91.83 | 372.01 | 617.70 |
|
| 273 |
+
| vLLM | Hunyuan-A13B-Instruct(W8A8C8-FP8) | 1 | 2048 | 60.07 | 148.80 | 160.41 |
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
## Contact Us
|
| 278 |
+
|
| 279 |
+
If you would like to leave a message for our R&D and product teams, Welcome to contact our open-source team . You can also contact us via email (hunyuan_opensource@tencent.com).
|