Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!-- ## **HunyuanCustom** -->
|
| 2 |
+
|
| 3 |
+
<p align="center">
|
| 4 |
+
<img src="assets/material/logo.png" height=100>
|
| 5 |
+
</p>
|
| 6 |
+
|
| 7 |
+
# **HunyuanCustom** 🌅
|
| 8 |
+
|
| 9 |
+
<div align="center">
|
| 10 |
+
<a href="https://github.com/Tencent/HunyuanCustom"><img src="https://img.shields.io/static/v1?label=HunyuanCustom%20Code&message=Github&color=blue"></a>  
|
| 11 |
+
<a href="https://hunyuancustom.github.io/"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Web&color=green"></a>  
|
| 12 |
+
<a href="https://hunyuan.tencent.com/modelSquare/home/play?modelId=192"><img src="https://img.shields.io/static/v1?label=Playground&message=Web&color=green"></a>
|
| 13 |
+
</div>
|
| 14 |
+
<div align="center">
|
| 15 |
+
<a href="https://arxiv.org/pdf/2505.04512"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Arxiv&color=red"></a>  
|
| 16 |
+
</div>
|
| 17 |
+
<div align="center">
|
| 18 |
+
<a href="https://huggingface.co/tencent/HunyuanCustom"><img src="https://img.shields.io/static/v1?label=HunyuanVideo&message=HuggingFace&color=yellow"></a>  
|
| 19 |
+
</div>
|
| 20 |
+
-----
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
> [**HunyuanCustom: A Multimodal-Driven Architecture for Customized Video Generation**](https://arxiv.org/pdf/2505.04512) <be>
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## 🔥🔥🔥 News!!
|
| 28 |
+
|
| 29 |
+
* May 8, 2025: 👋 We release the inference code and model weights of HunyuanCustom. [Download](models/README.md).
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
## 📑 Open-source Plan
|
| 33 |
+
|
| 34 |
+
- HunyuanCustom
|
| 35 |
+
- Single-Subject Video Customization
|
| 36 |
+
- [x] Inference
|
| 37 |
+
- [x] Checkpoints
|
| 38 |
+
- [ ] ComfyUI
|
| 39 |
+
- Audio-Driven Video Customization
|
| 40 |
+
- Video-Driven Video Customization
|
| 41 |
+
- Multi-Subject Video Customization
|
| 42 |
+
|
| 43 |
+
## Contents
|
| 44 |
+
- [**HunyuanCustom** 🌅](#hunyuancustom-)
|
| 45 |
+
- [🔥🔥🔥 News!!](#-news)
|
| 46 |
+
- [📑 Open-source Plan](#-open-source-plan)
|
| 47 |
+
- [Contents](#contents)
|
| 48 |
+
- [**Abstract**](#abstract)
|
| 49 |
+
- [**HunyuanCustom Overall Architecture**](#hunyuancustom-overall-architecture)
|
| 50 |
+
- [🎉 **HunyuanCustom Key Features**](#-hunyuancustom-key-features)
|
| 51 |
+
- [**Multimodal Video customization**](#multimodal-video-customization)
|
| 52 |
+
- [**Various Applications**](#various-applications)
|
| 53 |
+
- [📈 Comparisons](#-comparisons)
|
| 54 |
+
- [📜 Requirements](#-requirements)
|
| 55 |
+
- [🛠️ Dependencies and Installation](#️-dependencies-and-installation)
|
| 56 |
+
- [Installation Guide for Linux](#installation-guide-for-linux)
|
| 57 |
+
- [🧱 Download Pretrained Models](#-download-pretrained-models)
|
| 58 |
+
- [🚀 Parallel Inference on Multiple GPUs](#-parallel-inference-on-multiple-gpus)
|
| 59 |
+
- [🔑 Single-gpu Inference](#-single-gpu-inference)
|
| 60 |
+
- [Run with very low VRAM](#run-with-very-low-vram)
|
| 61 |
+
- [Run a Gradio Server](#run-a-gradio-server)
|
| 62 |
+
- [🔗 BibTeX](#-bibtex)
|
| 63 |
+
- [Acknowledgements](#acknowledgements)
|
| 64 |
+
---
|
| 65 |
+
|
| 66 |
+
## **Abstract**
|
| 67 |
+
|
| 68 |
+
Customized video generation aims to produce videos featuring specific subjects under flexible user-defined conditions, yet existing methods often struggle with identity consistency and limited input modalities. In this paper, we propose HunyuanCustom, a multi-modal customized video generation framework that emphasizes subject consistency while supporting image, audio, video, and text conditions. Built upon HunyuanVideo, our model first addresses the image-text conditioned generation task by introducing a text-image fusion module based on LLaVA for enhanced multi-modal understanding, along with an image ID enhancement module that leverages temporal concatenation to reinforce identity features across frames. To enable audio- and video-conditioned generation, we further propose modality-specific condition injection mechanisms: an AudioNet module that achieves hierarchical alignment via spatial cross-attention, and a video-driven injection module that integrates latent-compressed conditional video through a patchify-based feature-alignment network. Extensive experiments on single- and multi-subject scenarios demonstrate that HunyuanCustom significantly outperforms state-of-the-art open- and closed-source methods in terms of ID consistency, realism, and text-video alignment. Moreover, we validate its robustness across downstream tasks, including audio and video-driven customized video generation. Our results highlight the effectiveness of multi-modal conditioning and identity-preserving strategies in advancing controllable video generation.
|
| 69 |
+
|
| 70 |
+
## **HunyuanCustom Overall Architecture**
|
| 71 |
+
|
| 72 |
+

|
| 73 |
+
|
| 74 |
+
We propose **HunyuanCustom, a multi-modal, conditional, and controllable generation model centered on subject consistency**, built upon the Hunyuan Video generation framework. It enables the generation of subject-consistent videos conditioned on text, images, audio, and video inputs.
|
| 75 |
+
|
| 76 |
+
## 🎉 **HunyuanCustom Key Features**
|
| 77 |
+
|
| 78 |
+
### **Multimodal Video customization**
|
| 79 |
+
|
| 80 |
+
HunyuanCustom supports inputs in the form of **text, images, audio, and video**.
|
| 81 |
+
Specifically, it can handle single or multiple image inputs to enable customized video generation for one or more subjects.
|
| 82 |
+
Additionally, it can incorporate extra audio inputs to drive the subject to speak the corresponding audio.
|
| 83 |
+
Lastly, HunyuanCustom supports video input, allowing for the replacement of specified objects in the video with subjects from a given image.
|
| 84 |
+

|
| 85 |
+
|
| 86 |
+
### **Various Applications**
|
| 87 |
+
|
| 88 |
+
With the multi-modal capabilities of HunyuanCustom, numerous downstream tasks can be accomplished.
|
| 89 |
+
For instance, by taking multiple images as input, HunyuanCustom can facilitate **virtual human advertisements** and **virtual try-on**. Additionally,
|
| 90 |
+
with image and audio inputs, it can create **singing avatars**. Furthermore, by using an image and a video as inputs,
|
| 91 |
+
HunyuanCustom supports **video editing** by replacing subjects in the video with those in the provided image.
|
| 92 |
+
More applications await your exploration!
|
| 93 |
+

|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
## 📈 Comparisons
|
| 97 |
+
|
| 98 |
+
To evaluate the performance of HunyuanCustom, we compared it with state-of-the-art video customization methods,
|
| 99 |
+
including VACE, Skyreels, Pika, Vidu, Keling, and Hailuo. The comparison focused on face/subject consistency,
|
| 100 |
+
video-text alignment, and overall video quality.
|
| 101 |
+
|
| 102 |
+
| Models | Face-Sim | CLIP-B-T | DINO-Sim | Temp-Consis | DD |
|
| 103 |
+
|-------------------|----------|----------|----------|-------------|------|
|
| 104 |
+
| VACE-1.3B | 0.204 | _0.308_ | 0.569 | **0.967** | 0.53 |
|
| 105 |
+
| Skyreels | 0.402 | 0.295 | 0.579 | 0.942 | 0.72 |
|
| 106 |
+
| Pika | 0.363 | 0.305 | 0.485 | 0.928 | _0.89_ |
|
| 107 |
+
| Vidu2.0 | 0.424 | 0.300 | 0.537 | _0.961_ | 0.43 |
|
| 108 |
+
| Keling1.6 | 0.505 | 0.285 | _0.580_ | 0.914 | 0.78 |
|
| 109 |
+
| Hailuo | _0.526_ | **0.314**| 0.433 | 0.937 | **0.94** |
|
| 110 |
+
| **HunyuanCustom (Ours)** | **0.627**| 0.306 | **0.593**| 0.958 | 0.71 |
|
| 111 |
+
|
| 112 |
+
## 📜 Requirements
|
| 113 |
+
|
| 114 |
+
The following table shows the requirements for running HunyuanCustom model (batch size = 1) to generate videos:
|
| 115 |
+
|
| 116 |
+
| Model | Setting<br/>(height/width/frame) | GPU Peak Memory |
|
| 117 |
+
|:------------:|:--------------------------------:|:----------------:|
|
| 118 |
+
| HunyuanCustom | 720px1280px129f | 80GB |
|
| 119 |
+
| HunyuanCustom | 512px896px129f | 60GB |
|
| 120 |
+
|
| 121 |
+
* An NVIDIA GPU with CUDA support is required.
|
| 122 |
+
* The model is tested on a machine with 8GPUs.
|
| 123 |
+
* **Minimum**: The minimum GPU memory required is 24GB for 720px1280px129f but very slow.
|
| 124 |
+
* **Recommended**: We recommend using a GPU with 80GB of memory for better generation quality.
|
| 125 |
+
* Tested operating system: Linux
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
## 🛠️ Dependencies and Installation
|
| 129 |
+
|
| 130 |
+
Begin by cloning the repository:
|
| 131 |
+
```shell
|
| 132 |
+
git clone https://github.com/Tencent/HunyuanCustom.git
|
| 133 |
+
cd HunyuanCustom
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
### Installation Guide for Linux
|
| 137 |
+
|
| 138 |
+
We recommend CUDA versions 12.4 or 11.8 for the manual installation.
|
| 139 |
+
|
| 140 |
+
Conda's installation instructions are available [here](https://docs.anaconda.com/free/miniconda/index.html).
|
| 141 |
+
|
| 142 |
+
```shell
|
| 143 |
+
# 1. Create conda environment
|
| 144 |
+
conda create -n HunyuanCustom python==3.10.9
|
| 145 |
+
|
| 146 |
+
# 2. Activate the environment
|
| 147 |
+
conda activate HunyuanCustom
|
| 148 |
+
|
| 149 |
+
# 3. Install PyTorch and other dependencies using conda
|
| 150 |
+
# For CUDA 11.8
|
| 151 |
+
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=11.8 -c pytorch -c nvidia
|
| 152 |
+
# For CUDA 12.4
|
| 153 |
+
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia
|
| 154 |
+
|
| 155 |
+
# 4. Install pip dependencies
|
| 156 |
+
python -m pip install -r requirements.txt
|
| 157 |
+
python -m pip install tensorrt-cu12-bindings==10.6.0 tensorrt-cu12-libs==10.6.0
|
| 158 |
+
# 5. Install flash attention v2 for acceleration (requires CUDA 11.8 or above)
|
| 159 |
+
python -m pip install ninja
|
| 160 |
+
python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.6.3
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
In case of running into float point exception(core dump) on the specific GPU type, you may try the following solutions:
|
| 164 |
+
|
| 165 |
+
```shell
|
| 166 |
+
# Option 1: Making sure you have installed CUDA 12.4, CUBLAS>=12.4.5.8, and CUDNN>=9.00 (or simply using our CUDA 12 docker image).
|
| 167 |
+
pip install nvidia-cublas-cu12==12.4.5.8
|
| 168 |
+
export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/nvidia/cublas/lib/
|
| 169 |
+
|
| 170 |
+
# Option 2: Forcing to explictly use the CUDA 11.8 compiled version of Pytorch and all the other packages
|
| 171 |
+
pip uninstall -r requirements.txt # uninstall all packages
|
| 172 |
+
pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
|
| 173 |
+
pip install -r requirements.txt
|
| 174 |
+
pip install ninja
|
| 175 |
+
pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.6.3
|
| 176 |
+
```
|
| 177 |
+
|
| 178 |
+
Additionally, you can also use HunyuanVideo Docker image. Use the following command to pull and run the docker image.
|
| 179 |
+
|
| 180 |
+
```shell
|
| 181 |
+
# For CUDA 12.4 (updated to avoid float point exception)
|
| 182 |
+
docker pull hunyuanvideo/hunyuanvideo:cuda_12
|
| 183 |
+
docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_12
|
| 184 |
+
pip install gradio==3.39.0
|
| 185 |
+
|
| 186 |
+
# For CUDA 11.8
|
| 187 |
+
docker pull hunyuanvideo/hunyuanvideo:cuda_11
|
| 188 |
+
docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_11
|
| 189 |
+
pip install gradio==3.39.0
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
## 🧱 Download Pretrained Models
|
| 194 |
+
|
| 195 |
+
The details of download pretrained models are shown [here](models/README.md).
|
| 196 |
+
|
| 197 |
+
## 🚀 Parallel Inference on Multiple GPUs
|
| 198 |
+
|
| 199 |
+
For example, to generate a video with 8 GPUs, you can use the following command:
|
| 200 |
+
|
| 201 |
+
```bash
|
| 202 |
+
cd HunyuanCustom
|
| 203 |
+
|
| 204 |
+
export MODEL_BASE="./models"
|
| 205 |
+
export PYTHONPATH=./
|
| 206 |
+
torchrun --nnodes=1 --nproc_per_node=8 --master_port 29605 hymm_sp/sample_batch.py \
|
| 207 |
+
--input './assets/images/seg_woman_01.png' \
|
| 208 |
+
--pos-prompt "Realistic, High-quality. A woman is drinking coffee at a café." \
|
| 209 |
+
--neg-prompt "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion, blurring, text, subtitles, static, picture, black border." \
|
| 210 |
+
--ckpt ${MODEL_BASE}"/hunyuancustom_720P/mp_rank_00_model_states.pt" \
|
| 211 |
+
--video-size 720 1280 \
|
| 212 |
+
--seed 1024 \
|
| 213 |
+
--sample-n-frames 129 \
|
| 214 |
+
--infer-steps 30 \
|
| 215 |
+
--flow-shift-eval-video 13.0 \
|
| 216 |
+
--save-path './results/sp_720p'
|
| 217 |
+
```
|
| 218 |
+
|
| 219 |
+
## 🔑 Single-gpu Inference
|
| 220 |
+
|
| 221 |
+
For example, to generate a video with 1 GPU, you can use the following command:
|
| 222 |
+
|
| 223 |
+
```bash
|
| 224 |
+
cd HunyuanCustom
|
| 225 |
+
|
| 226 |
+
export MODEL_BASE="./models"
|
| 227 |
+
export CPU_OFFLOAD=1
|
| 228 |
+
export PYTHONPATH=./
|
| 229 |
+
python hymm_sp/sample_gpu_poor.py \
|
| 230 |
+
--input './assets/images/seg_woman_01.png' \
|
| 231 |
+
--pos-prompt "Realistic, High-quality. A woman is drinking coffee at a café." \
|
| 232 |
+
--neg-prompt "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion, blurring, text, subtitles, static, picture, black border." \
|
| 233 |
+
--ckpt ${MODEL_BASE}"/hunyuancustom_720P/mp_rank_00_model_states_fp8.pt" \
|
| 234 |
+
--video-size 512 896 \
|
| 235 |
+
--seed 1024 \
|
| 236 |
+
--sample-n-frames 129 \
|
| 237 |
+
--infer-steps 30 \
|
| 238 |
+
--flow-shift-eval-video 13.0 \
|
| 239 |
+
--save-path './results/1gpu_540p' \
|
| 240 |
+
--use-fp8
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
### Run with very low VRAM
|
| 244 |
+
|
| 245 |
+
```bash
|
| 246 |
+
cd HunyuanCustom
|
| 247 |
+
|
| 248 |
+
export MODEL_BASE="./models"
|
| 249 |
+
export CPU_OFFLOAD=1
|
| 250 |
+
export PYTHONPATH=./
|
| 251 |
+
python hymm_sp/sample_gpu_poor.py \
|
| 252 |
+
--input './assets/images/seg_woman_01.png' \
|
| 253 |
+
--pos-prompt "Realistic, High-quality. A woman is drinking coffee at a café." \
|
| 254 |
+
--neg-prompt "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion, blurring, text, subtitles, static, picture, black border." \
|
| 255 |
+
--ckpt ${MODEL_BASE}"/hunyuancustom_720P/mp_rank_00_model_states_fp8.pt" \
|
| 256 |
+
--video-size 720 1280 \
|
| 257 |
+
--seed 1024 \
|
| 258 |
+
--sample-n-frames 129 \
|
| 259 |
+
--infer-steps 30 \
|
| 260 |
+
--flow-shift-eval-video 13.0 \
|
| 261 |
+
--save-path './results/cpu_720p' \
|
| 262 |
+
--use-fp8 \
|
| 263 |
+
--cpu-offload
|
| 264 |
+
```
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
## Run a Gradio Server
|
| 268 |
+
```bash
|
| 269 |
+
cd HunyuanCustom
|
| 270 |
+
|
| 271 |
+
bash ./scripts/run_gradio.sh
|
| 272 |
+
|
| 273 |
+
```
|
| 274 |
+
|
| 275 |
+
## 🔗 BibTeX
|
| 276 |
+
|
| 277 |
+
If you find [HunyuanCustom](https://arxiv.org/abs/2505.04512) useful for your research and applications, please cite using this BibTeX:
|
| 278 |
+
|
| 279 |
+
```BibTeX
|
| 280 |
+
@misc{hu2025hunyuancustommultimodaldrivenarchitecturecustomized,
|
| 281 |
+
title={HunyuanCustom: A Multimodal-Driven Architecture for Customized Video Generation},
|
| 282 |
+
author={Teng Hu and Zhentao Yu and Zhengguang Zhou and Sen Liang and Yuan Zhou and Qin Lin and Qinglin Lu},
|
| 283 |
+
year={2025},
|
| 284 |
+
eprint={2505.04512},
|
| 285 |
+
archivePrefix={arXiv},
|
| 286 |
+
primaryClass={cs.CV},
|
| 287 |
+
url={https://arxiv.org/abs/2505.04512},
|
| 288 |
+
}
|
| 289 |
+
```
|
| 290 |
+
|
| 291 |
+
## Acknowledgements
|
| 292 |
+
|
| 293 |
+
We would like to thank the contributors to the [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium), [FLUX](https://github.com/black-forest-labs/flux), [Llama](https://github.com/meta-llama/llama), [LLaVA](https://github.com/haotian-liu/LLaVA), [Xtuner](https://github.com/InternLM/xtuner), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research and exploration.
|