--- tags: - timm - transformers pipeline_tag: image-feature-extraction library_name: timm license: other license_name: dinov3-license license_link: https://ai.meta.com/resources/models-and-libraries/dinov3-license --- # Model card for convnext_large.dinov3_lvd1689m A DINOv3 ConvNeXt image feature model. Pretrained on LVD-1689M with self-supervised DINOv3 method, distilled from DINOv3 ViT-7B. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 196.2 - GMACs: 34.4 - Activations (M): 43.1 - Image size: 224 x 224 - **Papers:** - DINOv3: https://arxiv.org/abs/2508.10104 - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545 - PyTorch Image Models: https://github.com/huggingface/pytorch-image-models - **Original:** https://github.com/facebookresearch/dinov3 - **Pretrain Dataset:** LVD-1689M - **License:** [DINOv3](https://ai.meta.com/resources/models-and-libraries/dinov3-license) ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('convnext_large.dinov3_lvd1689m', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'convnext_large.dinov3_lvd1689m', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 192, 56, 56]) # torch.Size([1, 384, 28, 28]) # torch.Size([1, 768, 14, 14]) # torch.Size([1, 1536, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'convnext_large.dinov3_lvd1689m', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1536, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @article{simeoni2025dinov3, title={DINOv3}, author={Sim{'e}oni, Oriane and Vo, Huy V and Seitzer, Maximilian and Baldassarre, Federico and Oquab, Maxime and Jose, Cijo and Khalidov, Vasil and Szafraniec, Marc and Yi, Seungeun and Ramamonjisoa, Micha{"e}l and others}, journal={arXiv preprint arXiv:2508.10104}, year={2025} } } ``` ```bibtex @article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```