tomaarsen HF Staff commited on
Commit
dadf87a
·
verified ·
1 Parent(s): b93c890

Add new SentenceTransformer model

Browse files
README.md ADDED
@@ -0,0 +1,646 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dense
10
+ - generated_from_trainer
11
+ - dataset_size:10000
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: google/siglip-base-patch16-512
14
+ widget:
15
+ - source_sentence: A man standing next to a little girl riding a horse.
16
+ sentences:
17
+ - The woman is working on her computer at the desk.
18
+ - A young man holding an umbrella next to a herd of cattle.
19
+ - 'a person sitting at a desk with a keyboard and monitor '
20
+ - source_sentence: 'A car at an intersection while a man is crossing the street. '
21
+ sentences:
22
+ - A plane that is flying in the air.
23
+ - a small girl sitting on a chair holding a white bear
24
+ - A young toddler walks across the grass in a park.
25
+ - source_sentence: A lady riding her bicycle on the side of a street.
26
+ sentences:
27
+ - Flowers hang from a small decorative post in a yard.
28
+ - Flowers in a clear vase sitting on a table.
29
+ - The toilet is near the door in the bathroom.
30
+ - source_sentence: 'A group of zebras standing beside each other in the desert. '
31
+ sentences:
32
+ - The bathroom is clean and ready for us to use.
33
+ - A woman throwing a frisbee as a child looks on.
34
+ - a bird with a pink eye is sitting on a branch in the woods.
35
+ - source_sentence: A large desk by a window is neatly arranged.
36
+ sentences:
37
+ - An old toilet sits in dirt with a helmet on top.
38
+ - A lady sitting at an enormous dining table with lots of food.
39
+ - A long hot dog on a plate on a table.
40
+ datasets:
41
+ - jxie/coco_captions
42
+ pipeline_tag: sentence-similarity
43
+ library_name: sentence-transformers
44
+ metrics:
45
+ - cosine_accuracy@1
46
+ - cosine_accuracy@3
47
+ - cosine_accuracy@5
48
+ - cosine_accuracy@10
49
+ - cosine_precision@1
50
+ - cosine_precision@3
51
+ - cosine_precision@5
52
+ - cosine_precision@10
53
+ - cosine_recall@1
54
+ - cosine_recall@3
55
+ - cosine_recall@5
56
+ - cosine_recall@10
57
+ - cosine_ndcg@10
58
+ - cosine_mrr@10
59
+ - cosine_map@100
60
+ co2_eq_emissions:
61
+ emissions: 14.565152777100327
62
+ energy_consumed: 0.054424347688532056
63
+ source: codecarbon
64
+ training_type: fine-tuning
65
+ on_cloud: false
66
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
67
+ ram_total_size: 31.777088165283203
68
+ hours_used: 0.169
69
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
70
+ model-index:
71
+ - name: Google SigLIP (512x512 resolution) model trained on COCO Captions
72
+ results:
73
+ - task:
74
+ type: information-retrieval
75
+ name: Information Retrieval
76
+ dataset:
77
+ name: coco eval
78
+ type: coco-eval
79
+ metrics:
80
+ - type: cosine_accuracy@1
81
+ value: 0.755
82
+ name: Cosine Accuracy@1
83
+ - type: cosine_accuracy@3
84
+ value: 0.944
85
+ name: Cosine Accuracy@3
86
+ - type: cosine_accuracy@5
87
+ value: 0.975
88
+ name: Cosine Accuracy@5
89
+ - type: cosine_accuracy@10
90
+ value: 0.992
91
+ name: Cosine Accuracy@10
92
+ - type: cosine_precision@1
93
+ value: 0.755
94
+ name: Cosine Precision@1
95
+ - type: cosine_precision@3
96
+ value: 0.31466666666666665
97
+ name: Cosine Precision@3
98
+ - type: cosine_precision@5
99
+ value: 0.19500000000000003
100
+ name: Cosine Precision@5
101
+ - type: cosine_precision@10
102
+ value: 0.09920000000000001
103
+ name: Cosine Precision@10
104
+ - type: cosine_recall@1
105
+ value: 0.755
106
+ name: Cosine Recall@1
107
+ - type: cosine_recall@3
108
+ value: 0.944
109
+ name: Cosine Recall@3
110
+ - type: cosine_recall@5
111
+ value: 0.975
112
+ name: Cosine Recall@5
113
+ - type: cosine_recall@10
114
+ value: 0.992
115
+ name: Cosine Recall@10
116
+ - type: cosine_ndcg@10
117
+ value: 0.8860228540949219
118
+ name: Cosine Ndcg@10
119
+ - type: cosine_mrr@10
120
+ value: 0.8505285714285713
121
+ name: Cosine Mrr@10
122
+ - type: cosine_map@100
123
+ value: 0.8508208051006964
124
+ name: Cosine Map@100
125
+ - task:
126
+ type: information-retrieval
127
+ name: Information Retrieval
128
+ dataset:
129
+ name: coco test
130
+ type: coco-test
131
+ metrics:
132
+ - type: cosine_accuracy@1
133
+ value: 0.754
134
+ name: Cosine Accuracy@1
135
+ - type: cosine_accuracy@3
136
+ value: 0.935
137
+ name: Cosine Accuracy@3
138
+ - type: cosine_accuracy@5
139
+ value: 0.976
140
+ name: Cosine Accuracy@5
141
+ - type: cosine_accuracy@10
142
+ value: 0.992
143
+ name: Cosine Accuracy@10
144
+ - type: cosine_precision@1
145
+ value: 0.754
146
+ name: Cosine Precision@1
147
+ - type: cosine_precision@3
148
+ value: 0.31166666666666665
149
+ name: Cosine Precision@3
150
+ - type: cosine_precision@5
151
+ value: 0.1952
152
+ name: Cosine Precision@5
153
+ - type: cosine_precision@10
154
+ value: 0.09920000000000001
155
+ name: Cosine Precision@10
156
+ - type: cosine_recall@1
157
+ value: 0.754
158
+ name: Cosine Recall@1
159
+ - type: cosine_recall@3
160
+ value: 0.935
161
+ name: Cosine Recall@3
162
+ - type: cosine_recall@5
163
+ value: 0.976
164
+ name: Cosine Recall@5
165
+ - type: cosine_recall@10
166
+ value: 0.992
167
+ name: Cosine Recall@10
168
+ - type: cosine_ndcg@10
169
+ value: 0.8848518154761025
170
+ name: Cosine Ndcg@10
171
+ - type: cosine_mrr@10
172
+ value: 0.8490460317460323
173
+ name: Cosine Mrr@10
174
+ - type: cosine_map@100
175
+ value: 0.849432976701497
176
+ name: Cosine Map@100
177
+ ---
178
+
179
+ # Google SigLIP (512x512 resolution) model trained on COCO Captions
180
+
181
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/siglip-base-patch16-512](https://huggingface.co/google/siglip-base-patch16-512) on the [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
182
+
183
+ ## Model Details
184
+
185
+ ### Model Description
186
+ - **Model Type:** Sentence Transformer
187
+ - **Base model:** [google/siglip-base-patch16-512](https://huggingface.co/google/siglip-base-patch16-512) <!-- at revision 753a949581523b60257d93e18391e8c27f72eb22 -->
188
+ - **Maximum Sequence Length:** None tokens
189
+ - **Output Dimensionality:** None dimensions
190
+ - **Similarity Function:** Cosine Similarity
191
+ - **Training Dataset:**
192
+ - [coco_captions](https://huggingface.co/datasets/jxie/coco_captions)
193
+ - **Language:** en
194
+ - **License:** apache-2.0
195
+
196
+ ### Model Sources
197
+
198
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
199
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
200
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
201
+
202
+ ### Full Model Architecture
203
+
204
+ ```
205
+ SentenceTransformer(
206
+ (0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'image': {'method': 'get_image_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'SiglipModel'})
207
+ )
208
+ ```
209
+
210
+ ## Usage
211
+
212
+ ### Direct Usage (Sentence Transformers)
213
+
214
+ First install the Sentence Transformers library:
215
+
216
+ ```bash
217
+ pip install -U sentence-transformers
218
+ ```
219
+
220
+ Then you can load this model and run inference.
221
+ ```python
222
+ from sentence_transformers import SentenceTransformer
223
+
224
+ # Download from the 🤗 Hub
225
+ model = SentenceTransformer("tomaarsen/google-siglip-base-coco")
226
+ # Run inference
227
+ sentences = [
228
+ 'A large desk by a window is neatly arranged.',
229
+ 'A long hot dog on a plate on a table.',
230
+ 'A lady sitting at an enormous dining table with lots of food.',
231
+ ]
232
+ embeddings = model.encode(sentences)
233
+ print(embeddings.shape)
234
+ # [3, 1024]
235
+
236
+ # Get the similarity scores for the embeddings
237
+ similarities = model.similarity(embeddings, embeddings)
238
+ print(similarities)
239
+ # tensor([[1.0000, 0.1848, 0.1578],
240
+ # [0.1848, 1.0000, 0.5058],
241
+ # [0.1578, 0.5058, 1.0000]])
242
+ ```
243
+
244
+ <!--
245
+ ### Direct Usage (Transformers)
246
+
247
+ <details><summary>Click to see the direct usage in Transformers</summary>
248
+
249
+ </details>
250
+ -->
251
+
252
+ <!--
253
+ ### Downstream Usage (Sentence Transformers)
254
+
255
+ You can finetune this model on your own dataset.
256
+
257
+ <details><summary>Click to expand</summary>
258
+
259
+ </details>
260
+ -->
261
+
262
+ <!--
263
+ ### Out-of-Scope Use
264
+
265
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
266
+ -->
267
+
268
+ ## Evaluation
269
+
270
+ ### Metrics
271
+
272
+ #### Information Retrieval
273
+
274
+ * Datasets: `coco-eval` and `coco-test`
275
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
276
+
277
+ | Metric | coco-eval | coco-test |
278
+ |:--------------------|:----------|:-----------|
279
+ | cosine_accuracy@1 | 0.755 | 0.754 |
280
+ | cosine_accuracy@3 | 0.944 | 0.935 |
281
+ | cosine_accuracy@5 | 0.975 | 0.976 |
282
+ | cosine_accuracy@10 | 0.992 | 0.992 |
283
+ | cosine_precision@1 | 0.755 | 0.754 |
284
+ | cosine_precision@3 | 0.3147 | 0.3117 |
285
+ | cosine_precision@5 | 0.195 | 0.1952 |
286
+ | cosine_precision@10 | 0.0992 | 0.0992 |
287
+ | cosine_recall@1 | 0.755 | 0.754 |
288
+ | cosine_recall@3 | 0.944 | 0.935 |
289
+ | cosine_recall@5 | 0.975 | 0.976 |
290
+ | cosine_recall@10 | 0.992 | 0.992 |
291
+ | **cosine_ndcg@10** | **0.886** | **0.8849** |
292
+ | cosine_mrr@10 | 0.8505 | 0.849 |
293
+ | cosine_map@100 | 0.8508 | 0.8494 |
294
+
295
+ <!--
296
+ ## Bias, Risks and Limitations
297
+
298
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
299
+ -->
300
+
301
+ <!--
302
+ ### Recommendations
303
+
304
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
305
+ -->
306
+
307
+ ## Training Details
308
+
309
+ ### Training Dataset
310
+
311
+ #### coco_captions
312
+
313
+ * Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)
314
+ * Size: 10,000 training samples
315
+ * Columns: <code>image</code> and <code>caption</code>
316
+ * Approximate statistics based on the first 1000 samples:
317
+ | | image | caption |
318
+ |:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|
319
+ | type | PIL.JpegImagePlugin.JpegImageFile | string |
320
+ | details | <ul><li></li></ul> | <ul><li>min: 28 characters</li><li>mean: 52.56 characters</li><li>max: 156 characters</li></ul> |
321
+ * Samples:
322
+ | image | caption |
323
+ |:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
324
+ | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x16B60463F10></code> | <code>A woman wearing a net on her head cutting a cake. </code> |
325
+ | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x16B5EB45F10></code> | <code>A woman cutting a large white sheet cake.</code> |
326
+ | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x16B6048B990></code> | <code>A woman wearing a hair net cutting a large sheet cake.</code> |
327
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
328
+ ```json
329
+ {
330
+ "scale": 20.0,
331
+ "similarity_fct": "cos_sim",
332
+ "gather_across_devices": false
333
+ }
334
+ ```
335
+
336
+ ### Evaluation Dataset
337
+
338
+ #### coco_captions
339
+
340
+ * Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)
341
+ * Size: 1,000 evaluation samples
342
+ * Columns: <code>image</code> and <code>caption</code>
343
+ * Approximate statistics based on the first 1000 samples:
344
+ | | image | caption |
345
+ |:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|
346
+ | type | PIL.JpegImagePlugin.JpegImageFile | string |
347
+ | details | <ul><li></li></ul> | <ul><li>min: 27 characters</li><li>mean: 52.45 characters</li><li>max: 151 characters</li></ul> |
348
+ * Samples:
349
+ | image | caption |
350
+ |:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
351
+ | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x16B5EE1A550></code> | <code>A child holding a flowered umbrella and petting a yak.</code> |
352
+ | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x16B5E41C1D0></code> | <code>A young man holding an umbrella next to a herd of cattle.</code> |
353
+ | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x16B5F276AD0></code> | <code>a young boy barefoot holding an umbrella touching the horn of a cow</code> |
354
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
355
+ ```json
356
+ {
357
+ "scale": 20.0,
358
+ "similarity_fct": "cos_sim",
359
+ "gather_across_devices": false
360
+ }
361
+ ```
362
+
363
+ ### Training Hyperparameters
364
+ #### Non-Default Hyperparameters
365
+
366
+ - `eval_strategy`: steps
367
+ - `per_device_train_batch_size`: 16
368
+ - `per_device_eval_batch_size`: 16
369
+ - `learning_rate`: 2e-05
370
+ - `num_train_epochs`: 1
371
+ - `warmup_ratio`: 0.1
372
+ - `bf16`: True
373
+ - `batch_sampler`: no_duplicates
374
+
375
+ #### All Hyperparameters
376
+ <details><summary>Click to expand</summary>
377
+
378
+ - `overwrite_output_dir`: False
379
+ - `do_predict`: False
380
+ - `eval_strategy`: steps
381
+ - `prediction_loss_only`: True
382
+ - `per_device_train_batch_size`: 16
383
+ - `per_device_eval_batch_size`: 16
384
+ - `gradient_accumulation_steps`: 1
385
+ - `eval_accumulation_steps`: None
386
+ - `torch_empty_cache_steps`: None
387
+ - `learning_rate`: 2e-05
388
+ - `weight_decay`: 0.0
389
+ - `adam_beta1`: 0.9
390
+ - `adam_beta2`: 0.999
391
+ - `adam_epsilon`: 1e-08
392
+ - `max_grad_norm`: 1.0
393
+ - `num_train_epochs`: 1
394
+ - `max_steps`: -1
395
+ - `lr_scheduler_type`: linear
396
+ - `lr_scheduler_kwargs`: {}
397
+ - `warmup_ratio`: 0.1
398
+ - `warmup_steps`: 0
399
+ - `log_level`: passive
400
+ - `log_level_replica`: warning
401
+ - `log_on_each_node`: True
402
+ - `logging_nan_inf_filter`: True
403
+ - `save_safetensors`: True
404
+ - `save_on_each_node`: False
405
+ - `save_only_model`: False
406
+ - `restore_callback_states_from_checkpoint`: False
407
+ - `use_cpu`: False
408
+ - `seed`: 42
409
+ - `data_seed`: None
410
+ - `jit_mode_eval`: False
411
+ - `bf16`: True
412
+ - `fp16`: False
413
+ - `half_precision_backend`: None
414
+ - `bf16_full_eval`: False
415
+ - `fp16_full_eval`: False
416
+ - `tf32`: None
417
+ - `local_rank`: 0
418
+ - `ddp_backend`: None
419
+ - `tpu_num_cores`: None
420
+ - `debug`: []
421
+ - `dataloader_drop_last`: False
422
+ - `dataloader_num_workers`: 0
423
+ - `dataloader_prefetch_factor`: None
424
+ - `past_index`: -1
425
+ - `disable_tqdm`: False
426
+ - `remove_unused_columns`: True
427
+ - `label_names`: None
428
+ - `load_best_model_at_end`: False
429
+ - `ignore_data_skip`: False
430
+ - `fsdp`: []
431
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
432
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
433
+ - `parallelism_config`: None
434
+ - `deepspeed`: None
435
+ - `label_smoothing_factor`: 0.0
436
+ - `optim`: adamw_torch_fused
437
+ - `optim_args`: None
438
+ - `group_by_length`: False
439
+ - `length_column_name`: length
440
+ - `ddp_find_unused_parameters`: None
441
+ - `ddp_bucket_cap_mb`: None
442
+ - `ddp_broadcast_buffers`: False
443
+ - `dataloader_pin_memory`: True
444
+ - `dataloader_persistent_workers`: False
445
+ - `skip_memory_metrics`: True
446
+ - `use_legacy_prediction_loop`: False
447
+ - `push_to_hub`: False
448
+ - `resume_from_checkpoint`: None
449
+ - `hub_model_id`: None
450
+ - `hub_strategy`: every_save
451
+ - `hub_private_repo`: None
452
+ - `hub_always_push`: False
453
+ - `hub_revision`: None
454
+ - `gradient_checkpointing`: False
455
+ - `gradient_checkpointing_kwargs`: None
456
+ - `include_for_metrics`: []
457
+ - `eval_do_concat_batches`: True
458
+ - `mp_parameters`:
459
+ - `auto_find_batch_size`: False
460
+ - `full_determinism`: False
461
+ - `ray_scope`: last
462
+ - `ddp_timeout`: 1800
463
+ - `torch_compile`: False
464
+ - `torch_compile_backend`: None
465
+ - `torch_compile_mode`: None
466
+ - `include_tokens_per_second`: False
467
+ - `include_num_input_tokens_seen`: no
468
+ - `neftune_noise_alpha`: None
469
+ - `optim_target_modules`: None
470
+ - `batch_eval_metrics`: False
471
+ - `eval_on_start`: False
472
+ - `use_liger_kernel`: False
473
+ - `liger_kernel_config`: None
474
+ - `eval_use_gather_object`: False
475
+ - `average_tokens_across_devices`: True
476
+ - `prompts`: None
477
+ - `batch_sampler`: no_duplicates
478
+ - `multi_dataset_batch_sampler`: proportional
479
+ - `router_mapping`: {}
480
+ - `learning_rate_mapping`: {}
481
+
482
+ </details>
483
+
484
+ ### Training Logs
485
+ | Epoch | Step | Training Loss | Validation Loss | coco-eval_cosine_ndcg@10 | coco-test_cosine_ndcg@10 |
486
+ |:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------------:|
487
+ | -1 | -1 | - | - | 0.2242 | - |
488
+ | 0.0112 | 7 | 2.6924 | - | - | - |
489
+ | 0.0224 | 14 | 3.1613 | - | - | - |
490
+ | 0.0336 | 21 | 3.1706 | - | - | - |
491
+ | 0.0448 | 28 | 2.5607 | - | - | - |
492
+ | 0.056 | 35 | 2.5325 | - | - | - |
493
+ | 0.0672 | 42 | 2.353 | - | - | - |
494
+ | 0.0784 | 49 | 1.5503 | - | - | - |
495
+ | 0.0896 | 56 | 1.5149 | - | - | - |
496
+ | 0.1008 | 63 | 1.404 | 0.8206 | 0.7171 | - |
497
+ | 0.112 | 70 | 1.0411 | - | - | - |
498
+ | 0.1232 | 77 | 0.748 | - | - | - |
499
+ | 0.1344 | 84 | 0.5821 | - | - | - |
500
+ | 0.1456 | 91 | 0.3756 | - | - | - |
501
+ | 0.1568 | 98 | 0.7135 | - | - | - |
502
+ | 0.168 | 105 | 0.5058 | - | - | - |
503
+ | 0.1792 | 112 | 0.4432 | - | - | - |
504
+ | 0.1904 | 119 | 0.428 | - | - | - |
505
+ | 0.2016 | 126 | 0.3416 | 0.3792 | 0.8132 | - |
506
+ | 0.2128 | 133 | 0.2572 | - | - | - |
507
+ | 0.224 | 140 | 0.1803 | - | - | - |
508
+ | 0.2352 | 147 | 0.2389 | - | - | - |
509
+ | 0.2464 | 154 | 0.3825 | - | - | - |
510
+ | 0.2576 | 161 | 0.2629 | - | - | - |
511
+ | 0.2688 | 168 | 0.4079 | - | - | - |
512
+ | 0.28 | 175 | 0.2106 | - | - | - |
513
+ | 0.2912 | 182 | 0.2089 | - | - | - |
514
+ | 0.3024 | 189 | 0.2215 | 0.2772 | 0.8425 | - |
515
+ | 0.3136 | 196 | 0.2142 | - | - | - |
516
+ | 0.3248 | 203 | 0.2895 | - | - | - |
517
+ | 0.336 | 210 | 0.2901 | - | - | - |
518
+ | 0.3472 | 217 | 0.2332 | - | - | - |
519
+ | 0.3584 | 224 | 0.2538 | - | - | - |
520
+ | 0.3696 | 231 | 0.1969 | - | - | - |
521
+ | 0.3808 | 238 | 0.2055 | - | - | - |
522
+ | 0.392 | 245 | 0.2135 | - | - | - |
523
+ | 0.4032 | 252 | 0.2177 | 0.2362 | 0.8513 | - |
524
+ | 0.4144 | 259 | 0.2228 | - | - | - |
525
+ | 0.4256 | 266 | 0.3378 | - | - | - |
526
+ | 0.4368 | 273 | 0.1516 | - | - | - |
527
+ | 0.448 | 280 | 0.1068 | - | - | - |
528
+ | 0.4592 | 287 | 0.1817 | - | - | - |
529
+ | 0.4704 | 294 | 0.1007 | - | - | - |
530
+ | 0.4816 | 301 | 0.1488 | - | - | - |
531
+ | 0.4928 | 308 | 0.1713 | - | - | - |
532
+ | 0.504 | 315 | 0.1963 | 0.2124 | 0.8633 | - |
533
+ | 0.5152 | 322 | 0.2033 | - | - | - |
534
+ | 0.5264 | 329 | 0.1321 | - | - | - |
535
+ | 0.5376 | 336 | 0.1642 | - | - | - |
536
+ | 0.5488 | 343 | 0.1352 | - | - | - |
537
+ | 0.56 | 350 | 0.1918 | - | - | - |
538
+ | 0.5712 | 357 | 0.1315 | - | - | - |
539
+ | 0.5824 | 364 | 0.2275 | - | - | - |
540
+ | 0.5936 | 371 | 0.0844 | - | - | - |
541
+ | 0.6048 | 378 | 0.0854 | 0.2052 | 0.8689 | - |
542
+ | 0.616 | 385 | 0.1572 | - | - | - |
543
+ | 0.6272 | 392 | 0.1111 | - | - | - |
544
+ | 0.6384 | 399 | 0.1958 | - | - | - |
545
+ | 0.6496 | 406 | 0.0896 | - | - | - |
546
+ | 0.6608 | 413 | 0.1532 | - | - | - |
547
+ | 0.672 | 420 | 0.1387 | - | - | - |
548
+ | 0.6832 | 427 | 0.0942 | - | - | - |
549
+ | 0.6944 | 434 | 0.1696 | - | - | - |
550
+ | 0.7056 | 441 | 0.1501 | 0.1898 | 0.8742 | - |
551
+ | 0.7168 | 448 | 0.143 | - | - | - |
552
+ | 0.728 | 455 | 0.1221 | - | - | - |
553
+ | 0.7392 | 462 | 0.1082 | - | - | - |
554
+ | 0.7504 | 469 | 0.1601 | - | - | - |
555
+ | 0.7616 | 476 | 0.1504 | - | - | - |
556
+ | 0.7728 | 483 | 0.1513 | - | - | - |
557
+ | 0.784 | 490 | 0.1108 | - | - | - |
558
+ | 0.7952 | 497 | 0.1086 | - | - | - |
559
+ | 0.8064 | 504 | 0.11 | 0.1689 | 0.8782 | - |
560
+ | 0.8176 | 511 | 0.1562 | - | - | - |
561
+ | 0.8288 | 518 | 0.1291 | - | - | - |
562
+ | 0.84 | 525 | 0.0687 | - | - | - |
563
+ | 0.8512 | 532 | 0.0966 | - | - | - |
564
+ | 0.8624 | 539 | 0.0977 | - | - | - |
565
+ | 0.8736 | 546 | 0.089 | - | - | - |
566
+ | 0.8848 | 553 | 0.0697 | - | - | - |
567
+ | 0.896 | 560 | 0.0561 | - | - | - |
568
+ | 0.9072 | 567 | 0.1078 | 0.1779 | 0.8860 | - |
569
+ | 0.9184 | 574 | 0.1425 | - | - | - |
570
+ | 0.9296 | 581 | 0.1273 | - | - | - |
571
+ | 0.9408 | 588 | 0.1215 | - | - | - |
572
+ | 0.952 | 595 | 0.1311 | - | - | - |
573
+ | 0.9632 | 602 | 0.0512 | - | - | - |
574
+ | 0.9744 | 609 | 0.0735 | - | - | - |
575
+ | 0.9856 | 616 | 0.1125 | - | - | - |
576
+ | 0.9968 | 623 | 0.1359 | - | - | - |
577
+ | -1 | -1 | - | - | - | 0.8849 |
578
+
579
+
580
+ ### Environmental Impact
581
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
582
+ - **Energy Consumed**: 0.054 kWh
583
+ - **Carbon Emitted**: 0.015 kg of CO2
584
+ - **Hours Used**: 0.169 hours
585
+
586
+ ### Training Hardware
587
+ - **On Cloud**: No
588
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
589
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
590
+ - **RAM Size**: 31.78 GB
591
+
592
+ ### Framework Versions
593
+ - Python: 3.11.6
594
+ - Sentence Transformers: 5.2.0.dev0
595
+ - Transformers: 4.57.0.dev0
596
+ - PyTorch: 2.8.0+cu128
597
+ - Accelerate: 1.6.0
598
+ - Datasets: 3.6.0
599
+ - Tokenizers: 0.22.1
600
+
601
+ ## Citation
602
+
603
+ ### BibTeX
604
+
605
+ #### Sentence Transformers
606
+ ```bibtex
607
+ @inproceedings{reimers-2019-sentence-bert,
608
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
609
+ author = "Reimers, Nils and Gurevych, Iryna",
610
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
611
+ month = "11",
612
+ year = "2019",
613
+ publisher = "Association for Computational Linguistics",
614
+ url = "https://arxiv.org/abs/1908.10084",
615
+ }
616
+ ```
617
+
618
+ #### MultipleNegativesRankingLoss
619
+ ```bibtex
620
+ @misc{henderson2017efficient,
621
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
622
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
623
+ year={2017},
624
+ eprint={1705.00652},
625
+ archivePrefix={arXiv},
626
+ primaryClass={cs.CL}
627
+ }
628
+ ```
629
+
630
+ <!--
631
+ ## Glossary
632
+
633
+ *Clearly define terms in order to be accessible across audiences.*
634
+ -->
635
+
636
+ <!--
637
+ ## Model Card Authors
638
+
639
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
640
+ -->
641
+
642
+ <!--
643
+ ## Model Card Contact
644
+
645
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
646
+ -->
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SiglipModel"
4
+ ],
5
+ "dtype": "float32",
6
+ "initializer_factor": 1.0,
7
+ "model_type": "siglip",
8
+ "text_config": {
9
+ "attention_dropout": 0.0,
10
+ "dtype": "float32",
11
+ "hidden_act": "gelu_pytorch_tanh",
12
+ "hidden_size": 768,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-06,
15
+ "max_position_embeddings": 64,
16
+ "model_type": "siglip_text_model",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "projection_size": 768,
20
+ "vocab_size": 32000
21
+ },
22
+ "transformers_version": "4.57.0.dev0",
23
+ "vision_config": {
24
+ "attention_dropout": 0.0,
25
+ "dtype": "float32",
26
+ "hidden_act": "gelu_pytorch_tanh",
27
+ "hidden_size": 768,
28
+ "image_size": 512,
29
+ "intermediate_size": 3072,
30
+ "layer_norm_eps": 1e-06,
31
+ "model_type": "siglip_vision_model",
32
+ "num_attention_heads": 12,
33
+ "num_channels": 3,
34
+ "num_hidden_layers": 12,
35
+ "patch_size": 16
36
+ }
37
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.2.0.dev0",
5
+ "transformers": "4.57.0.dev0",
6
+ "pytorch": "2.8.0+cu128"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecf495ea7c4acb8a9b426f035ab89bf5d0fb9717d5c9b268871187b988f6bf93
3
+ size 815215944
modules.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ }
8
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "transformer_task": "feature-extraction",
3
+ "modality_config": {
4
+ "text": {
5
+ "method": "get_text_features",
6
+ "method_output_name": null
7
+ },
8
+ "image": {
9
+ "method": "get_image_features",
10
+ "method_output_name": null
11
+ }
12
+ },
13
+ "module_output_name": "sentence_embedding"
14
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token": {
3
+ "content": "</s>",
4
+ "lstrip": true,
5
+ "normalized": false,
6
+ "rstrip": true,
7
+ "single_word": false
8
+ },
9
+ "pad_token": {
10
+ "content": "</s>",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": true,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": true,
19
+ "normalized": false,
20
+ "rstrip": true,
21
+ "single_word": false
22
+ }
23
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e5036bed065526c3c212dfbe288752391797c4bb1a284aa18c9a0b23fcaf8ec
3
+ size 798330
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "1": {
4
+ "content": "</s>",
5
+ "lstrip": true,
6
+ "normalized": false,
7
+ "rstrip": true,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "2": {
12
+ "content": "<unk>",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false,
17
+ "special": true
18
+ }
19
+ },
20
+ "additional_special_tokens": [],
21
+ "clean_up_tokenization_spaces": true,
22
+ "do_convert_rgb": true,
23
+ "do_lower_case": true,
24
+ "eos_token": "</s>",
25
+ "extra_special_tokens": {},
26
+ "model_input_names": [
27
+ "input_ids"
28
+ ],
29
+ "model_max_length": 64,
30
+ "pad_token": "</s>",
31
+ "processor_class": "SiglipProcessor",
32
+ "sp_model_kwargs": {},
33
+ "tokenizer_class": "SiglipTokenizer",
34
+ "unk_token": "<unk>"
35
+ }