Add new SentenceTransformer model
Browse files- README.md +646 -0
- config.json +37 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +8 -0
- sentence_bert_config.json +14 -0
- special_tokens_map.json +23 -0
- spiece.model +3 -0
- tokenizer_config.json +35 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,646 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language:
         | 
| 3 | 
            +
            - en
         | 
| 4 | 
            +
            license: apache-2.0
         | 
| 5 | 
            +
            tags:
         | 
| 6 | 
            +
            - sentence-transformers
         | 
| 7 | 
            +
            - sentence-similarity
         | 
| 8 | 
            +
            - feature-extraction
         | 
| 9 | 
            +
            - dense
         | 
| 10 | 
            +
            - generated_from_trainer
         | 
| 11 | 
            +
            - dataset_size:10000
         | 
| 12 | 
            +
            - loss:MultipleNegativesRankingLoss
         | 
| 13 | 
            +
            base_model: google/siglip-base-patch16-512
         | 
| 14 | 
            +
            widget:
         | 
| 15 | 
            +
            - source_sentence: A man standing next to a little girl riding a horse.
         | 
| 16 | 
            +
              sentences:
         | 
| 17 | 
            +
              - The woman is working on her computer at the desk.
         | 
| 18 | 
            +
              - A young man holding an umbrella next to a herd of cattle.
         | 
| 19 | 
            +
              - 'a person sitting at a desk with a keyboard and monitor '
         | 
| 20 | 
            +
            - source_sentence: 'A car at an intersection while a man is crossing the street. '
         | 
| 21 | 
            +
              sentences:
         | 
| 22 | 
            +
              - A plane that is flying in the air.
         | 
| 23 | 
            +
              - a small girl sitting on a chair holding a white bear
         | 
| 24 | 
            +
              - A young toddler walks across the grass in a park.
         | 
| 25 | 
            +
            - source_sentence: A lady riding her bicycle on the side of a street.
         | 
| 26 | 
            +
              sentences:
         | 
| 27 | 
            +
              - Flowers hang from a small decorative post in a yard.
         | 
| 28 | 
            +
              - Flowers in a clear vase sitting on a table.
         | 
| 29 | 
            +
              - The toilet is near the door in the bathroom.
         | 
| 30 | 
            +
            - source_sentence: 'A group of zebras standing beside each other in the desert. '
         | 
| 31 | 
            +
              sentences:
         | 
| 32 | 
            +
              - The bathroom is clean and ready for us to use.
         | 
| 33 | 
            +
              - A woman throwing a frisbee as a child looks on.
         | 
| 34 | 
            +
              - a bird with a pink eye is sitting on a branch in the woods.
         | 
| 35 | 
            +
            - source_sentence: A large desk by a window is neatly arranged.
         | 
| 36 | 
            +
              sentences:
         | 
| 37 | 
            +
              - An old toilet sits in dirt with a helmet on top.
         | 
| 38 | 
            +
              - A lady sitting at an enormous dining table with lots of food.
         | 
| 39 | 
            +
              - A long hot dog on a plate on a table.
         | 
| 40 | 
            +
            datasets:
         | 
| 41 | 
            +
            - jxie/coco_captions
         | 
| 42 | 
            +
            pipeline_tag: sentence-similarity
         | 
| 43 | 
            +
            library_name: sentence-transformers
         | 
| 44 | 
            +
            metrics:
         | 
| 45 | 
            +
            - cosine_accuracy@1
         | 
| 46 | 
            +
            - cosine_accuracy@3
         | 
| 47 | 
            +
            - cosine_accuracy@5
         | 
| 48 | 
            +
            - cosine_accuracy@10
         | 
| 49 | 
            +
            - cosine_precision@1
         | 
| 50 | 
            +
            - cosine_precision@3
         | 
| 51 | 
            +
            - cosine_precision@5
         | 
| 52 | 
            +
            - cosine_precision@10
         | 
| 53 | 
            +
            - cosine_recall@1
         | 
| 54 | 
            +
            - cosine_recall@3
         | 
| 55 | 
            +
            - cosine_recall@5
         | 
| 56 | 
            +
            - cosine_recall@10
         | 
| 57 | 
            +
            - cosine_ndcg@10
         | 
| 58 | 
            +
            - cosine_mrr@10
         | 
| 59 | 
            +
            - cosine_map@100
         | 
| 60 | 
            +
            co2_eq_emissions:
         | 
| 61 | 
            +
              emissions: 14.565152777100327
         | 
| 62 | 
            +
              energy_consumed: 0.054424347688532056
         | 
| 63 | 
            +
              source: codecarbon
         | 
| 64 | 
            +
              training_type: fine-tuning
         | 
| 65 | 
            +
              on_cloud: false
         | 
| 66 | 
            +
              cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
         | 
| 67 | 
            +
              ram_total_size: 31.777088165283203
         | 
| 68 | 
            +
              hours_used: 0.169
         | 
| 69 | 
            +
              hardware_used: 1 x NVIDIA GeForce RTX 3090
         | 
| 70 | 
            +
            model-index:
         | 
| 71 | 
            +
            - name: Google SigLIP (512x512 resolution) model trained on COCO Captions
         | 
| 72 | 
            +
              results:
         | 
| 73 | 
            +
              - task:
         | 
| 74 | 
            +
                  type: information-retrieval
         | 
| 75 | 
            +
                  name: Information Retrieval
         | 
| 76 | 
            +
                dataset:
         | 
| 77 | 
            +
                  name: coco eval
         | 
| 78 | 
            +
                  type: coco-eval
         | 
| 79 | 
            +
                metrics:
         | 
| 80 | 
            +
                - type: cosine_accuracy@1
         | 
| 81 | 
            +
                  value: 0.755
         | 
| 82 | 
            +
                  name: Cosine Accuracy@1
         | 
| 83 | 
            +
                - type: cosine_accuracy@3
         | 
| 84 | 
            +
                  value: 0.944
         | 
| 85 | 
            +
                  name: Cosine Accuracy@3
         | 
| 86 | 
            +
                - type: cosine_accuracy@5
         | 
| 87 | 
            +
                  value: 0.975
         | 
| 88 | 
            +
                  name: Cosine Accuracy@5
         | 
| 89 | 
            +
                - type: cosine_accuracy@10
         | 
| 90 | 
            +
                  value: 0.992
         | 
| 91 | 
            +
                  name: Cosine Accuracy@10
         | 
| 92 | 
            +
                - type: cosine_precision@1
         | 
| 93 | 
            +
                  value: 0.755
         | 
| 94 | 
            +
                  name: Cosine Precision@1
         | 
| 95 | 
            +
                - type: cosine_precision@3
         | 
| 96 | 
            +
                  value: 0.31466666666666665
         | 
| 97 | 
            +
                  name: Cosine Precision@3
         | 
| 98 | 
            +
                - type: cosine_precision@5
         | 
| 99 | 
            +
                  value: 0.19500000000000003
         | 
| 100 | 
            +
                  name: Cosine Precision@5
         | 
| 101 | 
            +
                - type: cosine_precision@10
         | 
| 102 | 
            +
                  value: 0.09920000000000001
         | 
| 103 | 
            +
                  name: Cosine Precision@10
         | 
| 104 | 
            +
                - type: cosine_recall@1
         | 
| 105 | 
            +
                  value: 0.755
         | 
| 106 | 
            +
                  name: Cosine Recall@1
         | 
| 107 | 
            +
                - type: cosine_recall@3
         | 
| 108 | 
            +
                  value: 0.944
         | 
| 109 | 
            +
                  name: Cosine Recall@3
         | 
| 110 | 
            +
                - type: cosine_recall@5
         | 
| 111 | 
            +
                  value: 0.975
         | 
| 112 | 
            +
                  name: Cosine Recall@5
         | 
| 113 | 
            +
                - type: cosine_recall@10
         | 
| 114 | 
            +
                  value: 0.992
         | 
| 115 | 
            +
                  name: Cosine Recall@10
         | 
| 116 | 
            +
                - type: cosine_ndcg@10
         | 
| 117 | 
            +
                  value: 0.8860228540949219
         | 
| 118 | 
            +
                  name: Cosine Ndcg@10
         | 
| 119 | 
            +
                - type: cosine_mrr@10
         | 
| 120 | 
            +
                  value: 0.8505285714285713
         | 
| 121 | 
            +
                  name: Cosine Mrr@10
         | 
| 122 | 
            +
                - type: cosine_map@100
         | 
| 123 | 
            +
                  value: 0.8508208051006964
         | 
| 124 | 
            +
                  name: Cosine Map@100
         | 
| 125 | 
            +
              - task:
         | 
| 126 | 
            +
                  type: information-retrieval
         | 
| 127 | 
            +
                  name: Information Retrieval
         | 
| 128 | 
            +
                dataset:
         | 
| 129 | 
            +
                  name: coco test
         | 
| 130 | 
            +
                  type: coco-test
         | 
| 131 | 
            +
                metrics:
         | 
| 132 | 
            +
                - type: cosine_accuracy@1
         | 
| 133 | 
            +
                  value: 0.754
         | 
| 134 | 
            +
                  name: Cosine Accuracy@1
         | 
| 135 | 
            +
                - type: cosine_accuracy@3
         | 
| 136 | 
            +
                  value: 0.935
         | 
| 137 | 
            +
                  name: Cosine Accuracy@3
         | 
| 138 | 
            +
                - type: cosine_accuracy@5
         | 
| 139 | 
            +
                  value: 0.976
         | 
| 140 | 
            +
                  name: Cosine Accuracy@5
         | 
| 141 | 
            +
                - type: cosine_accuracy@10
         | 
| 142 | 
            +
                  value: 0.992
         | 
| 143 | 
            +
                  name: Cosine Accuracy@10
         | 
| 144 | 
            +
                - type: cosine_precision@1
         | 
| 145 | 
            +
                  value: 0.754
         | 
| 146 | 
            +
                  name: Cosine Precision@1
         | 
| 147 | 
            +
                - type: cosine_precision@3
         | 
| 148 | 
            +
                  value: 0.31166666666666665
         | 
| 149 | 
            +
                  name: Cosine Precision@3
         | 
| 150 | 
            +
                - type: cosine_precision@5
         | 
| 151 | 
            +
                  value: 0.1952
         | 
| 152 | 
            +
                  name: Cosine Precision@5
         | 
| 153 | 
            +
                - type: cosine_precision@10
         | 
| 154 | 
            +
                  value: 0.09920000000000001
         | 
| 155 | 
            +
                  name: Cosine Precision@10
         | 
| 156 | 
            +
                - type: cosine_recall@1
         | 
| 157 | 
            +
                  value: 0.754
         | 
| 158 | 
            +
                  name: Cosine Recall@1
         | 
| 159 | 
            +
                - type: cosine_recall@3
         | 
| 160 | 
            +
                  value: 0.935
         | 
| 161 | 
            +
                  name: Cosine Recall@3
         | 
| 162 | 
            +
                - type: cosine_recall@5
         | 
| 163 | 
            +
                  value: 0.976
         | 
| 164 | 
            +
                  name: Cosine Recall@5
         | 
| 165 | 
            +
                - type: cosine_recall@10
         | 
| 166 | 
            +
                  value: 0.992
         | 
| 167 | 
            +
                  name: Cosine Recall@10
         | 
| 168 | 
            +
                - type: cosine_ndcg@10
         | 
| 169 | 
            +
                  value: 0.8848518154761025
         | 
| 170 | 
            +
                  name: Cosine Ndcg@10
         | 
| 171 | 
            +
                - type: cosine_mrr@10
         | 
| 172 | 
            +
                  value: 0.8490460317460323
         | 
| 173 | 
            +
                  name: Cosine Mrr@10
         | 
| 174 | 
            +
                - type: cosine_map@100
         | 
| 175 | 
            +
                  value: 0.849432976701497
         | 
| 176 | 
            +
                  name: Cosine Map@100
         | 
| 177 | 
            +
            ---
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            # Google SigLIP (512x512 resolution) model trained on COCO Captions
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/siglip-base-patch16-512](https://huggingface.co/google/siglip-base-patch16-512) on the [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
         | 
| 182 | 
            +
             | 
| 183 | 
            +
            ## Model Details
         | 
| 184 | 
            +
             | 
| 185 | 
            +
            ### Model Description
         | 
| 186 | 
            +
            - **Model Type:** Sentence Transformer
         | 
| 187 | 
            +
            - **Base model:** [google/siglip-base-patch16-512](https://huggingface.co/google/siglip-base-patch16-512) <!-- at revision 753a949581523b60257d93e18391e8c27f72eb22 -->
         | 
| 188 | 
            +
            - **Maximum Sequence Length:** None tokens
         | 
| 189 | 
            +
            - **Output Dimensionality:** None dimensions
         | 
| 190 | 
            +
            - **Similarity Function:** Cosine Similarity
         | 
| 191 | 
            +
            - **Training Dataset:**
         | 
| 192 | 
            +
                - [coco_captions](https://huggingface.co/datasets/jxie/coco_captions)
         | 
| 193 | 
            +
            - **Language:** en
         | 
| 194 | 
            +
            - **License:** apache-2.0
         | 
| 195 | 
            +
             | 
| 196 | 
            +
            ### Model Sources
         | 
| 197 | 
            +
             | 
| 198 | 
            +
            - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
         | 
| 199 | 
            +
            - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
         | 
| 200 | 
            +
            - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
         | 
| 201 | 
            +
             | 
| 202 | 
            +
            ### Full Model Architecture
         | 
| 203 | 
            +
             | 
| 204 | 
            +
            ```
         | 
| 205 | 
            +
            SentenceTransformer(
         | 
| 206 | 
            +
              (0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'image': {'method': 'get_image_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'SiglipModel'})
         | 
| 207 | 
            +
            )
         | 
| 208 | 
            +
            ```
         | 
| 209 | 
            +
             | 
| 210 | 
            +
            ## Usage
         | 
| 211 | 
            +
             | 
| 212 | 
            +
            ### Direct Usage (Sentence Transformers)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
            First install the Sentence Transformers library:
         | 
| 215 | 
            +
             | 
| 216 | 
            +
            ```bash
         | 
| 217 | 
            +
            pip install -U sentence-transformers
         | 
| 218 | 
            +
            ```
         | 
| 219 | 
            +
             | 
| 220 | 
            +
            Then you can load this model and run inference.
         | 
| 221 | 
            +
            ```python
         | 
| 222 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 223 | 
            +
             | 
| 224 | 
            +
            # Download from the 🤗 Hub
         | 
| 225 | 
            +
            model = SentenceTransformer("tomaarsen/google-siglip-base-coco")
         | 
| 226 | 
            +
            # Run inference
         | 
| 227 | 
            +
            sentences = [
         | 
| 228 | 
            +
                'A large desk by a window is neatly arranged.',
         | 
| 229 | 
            +
                'A long hot dog on a plate on a table.',
         | 
| 230 | 
            +
                'A lady sitting at an enormous dining table with lots of food.',
         | 
| 231 | 
            +
            ]
         | 
| 232 | 
            +
            embeddings = model.encode(sentences)
         | 
| 233 | 
            +
            print(embeddings.shape)
         | 
| 234 | 
            +
            # [3, 1024]
         | 
| 235 | 
            +
             | 
| 236 | 
            +
            # Get the similarity scores for the embeddings
         | 
| 237 | 
            +
            similarities = model.similarity(embeddings, embeddings)
         | 
| 238 | 
            +
            print(similarities)
         | 
| 239 | 
            +
            # tensor([[1.0000, 0.1848, 0.1578],
         | 
| 240 | 
            +
            #         [0.1848, 1.0000, 0.5058],
         | 
| 241 | 
            +
            #         [0.1578, 0.5058, 1.0000]])
         | 
| 242 | 
            +
            ```
         | 
| 243 | 
            +
             | 
| 244 | 
            +
            <!--
         | 
| 245 | 
            +
            ### Direct Usage (Transformers)
         | 
| 246 | 
            +
             | 
| 247 | 
            +
            <details><summary>Click to see the direct usage in Transformers</summary>
         | 
| 248 | 
            +
             | 
| 249 | 
            +
            </details>
         | 
| 250 | 
            +
            -->
         | 
| 251 | 
            +
             | 
| 252 | 
            +
            <!--
         | 
| 253 | 
            +
            ### Downstream Usage (Sentence Transformers)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
            You can finetune this model on your own dataset.
         | 
| 256 | 
            +
             | 
| 257 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 258 | 
            +
             | 
| 259 | 
            +
            </details>
         | 
| 260 | 
            +
            -->
         | 
| 261 | 
            +
             | 
| 262 | 
            +
            <!--
         | 
| 263 | 
            +
            ### Out-of-Scope Use
         | 
| 264 | 
            +
             | 
| 265 | 
            +
            *List how the model may foreseeably be misused and address what users ought not to do with the model.*
         | 
| 266 | 
            +
            -->
         | 
| 267 | 
            +
             | 
| 268 | 
            +
            ## Evaluation
         | 
| 269 | 
            +
             | 
| 270 | 
            +
            ### Metrics
         | 
| 271 | 
            +
             | 
| 272 | 
            +
            #### Information Retrieval
         | 
| 273 | 
            +
             | 
| 274 | 
            +
            * Datasets: `coco-eval` and `coco-test`
         | 
| 275 | 
            +
            * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
            | Metric              | coco-eval | coco-test  |
         | 
| 278 | 
            +
            |:--------------------|:----------|:-----------|
         | 
| 279 | 
            +
            | cosine_accuracy@1   | 0.755     | 0.754      |
         | 
| 280 | 
            +
            | cosine_accuracy@3   | 0.944     | 0.935      |
         | 
| 281 | 
            +
            | cosine_accuracy@5   | 0.975     | 0.976      |
         | 
| 282 | 
            +
            | cosine_accuracy@10  | 0.992     | 0.992      |
         | 
| 283 | 
            +
            | cosine_precision@1  | 0.755     | 0.754      |
         | 
| 284 | 
            +
            | cosine_precision@3  | 0.3147    | 0.3117     |
         | 
| 285 | 
            +
            | cosine_precision@5  | 0.195     | 0.1952     |
         | 
| 286 | 
            +
            | cosine_precision@10 | 0.0992    | 0.0992     |
         | 
| 287 | 
            +
            | cosine_recall@1     | 0.755     | 0.754      |
         | 
| 288 | 
            +
            | cosine_recall@3     | 0.944     | 0.935      |
         | 
| 289 | 
            +
            | cosine_recall@5     | 0.975     | 0.976      |
         | 
| 290 | 
            +
            | cosine_recall@10    | 0.992     | 0.992      |
         | 
| 291 | 
            +
            | **cosine_ndcg@10**  | **0.886** | **0.8849** |
         | 
| 292 | 
            +
            | cosine_mrr@10       | 0.8505    | 0.849      |
         | 
| 293 | 
            +
            | cosine_map@100      | 0.8508    | 0.8494     |
         | 
| 294 | 
            +
             | 
| 295 | 
            +
            <!--
         | 
| 296 | 
            +
            ## Bias, Risks and Limitations
         | 
| 297 | 
            +
             | 
| 298 | 
            +
            *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
         | 
| 299 | 
            +
            -->
         | 
| 300 | 
            +
             | 
| 301 | 
            +
            <!--
         | 
| 302 | 
            +
            ### Recommendations
         | 
| 303 | 
            +
             | 
| 304 | 
            +
            *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
         | 
| 305 | 
            +
            -->
         | 
| 306 | 
            +
             | 
| 307 | 
            +
            ## Training Details
         | 
| 308 | 
            +
             | 
| 309 | 
            +
            ### Training Dataset
         | 
| 310 | 
            +
             | 
| 311 | 
            +
            #### coco_captions
         | 
| 312 | 
            +
             | 
| 313 | 
            +
            * Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)
         | 
| 314 | 
            +
            * Size: 10,000 training samples
         | 
| 315 | 
            +
            * Columns: <code>image</code> and <code>caption</code>
         | 
| 316 | 
            +
            * Approximate statistics based on the first 1000 samples:
         | 
| 317 | 
            +
              |         | image                             | caption                                                                                         |
         | 
| 318 | 
            +
              |:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|
         | 
| 319 | 
            +
              | type    | PIL.JpegImagePlugin.JpegImageFile | string                                                                                          |
         | 
| 320 | 
            +
              | details | <ul><li></li></ul>                | <ul><li>min: 28 characters</li><li>mean: 52.56 characters</li><li>max: 156 characters</li></ul> |
         | 
| 321 | 
            +
            * Samples:
         | 
| 322 | 
            +
              | image                                                                                         | caption                                                             |
         | 
| 323 | 
            +
              |:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
         | 
| 324 | 
            +
              | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x16B60463F10></code> | <code>A woman wearing a net on her head cutting a cake. </code>     |
         | 
| 325 | 
            +
              | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x16B5EB45F10></code> | <code>A woman cutting a large white sheet cake.</code>              |
         | 
| 326 | 
            +
              | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x16B6048B990></code> | <code>A woman wearing a hair net cutting a large sheet cake.</code> |
         | 
| 327 | 
            +
            * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
         | 
| 328 | 
            +
              ```json
         | 
| 329 | 
            +
              {
         | 
| 330 | 
            +
                  "scale": 20.0,
         | 
| 331 | 
            +
                  "similarity_fct": "cos_sim",
         | 
| 332 | 
            +
                  "gather_across_devices": false
         | 
| 333 | 
            +
              }
         | 
| 334 | 
            +
              ```
         | 
| 335 | 
            +
             | 
| 336 | 
            +
            ### Evaluation Dataset
         | 
| 337 | 
            +
             | 
| 338 | 
            +
            #### coco_captions
         | 
| 339 | 
            +
             | 
| 340 | 
            +
            * Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)
         | 
| 341 | 
            +
            * Size: 1,000 evaluation samples
         | 
| 342 | 
            +
            * Columns: <code>image</code> and <code>caption</code>
         | 
| 343 | 
            +
            * Approximate statistics based on the first 1000 samples:
         | 
| 344 | 
            +
              |         | image                             | caption                                                                                         |
         | 
| 345 | 
            +
              |:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|
         | 
| 346 | 
            +
              | type    | PIL.JpegImagePlugin.JpegImageFile | string                                                                                          |
         | 
| 347 | 
            +
              | details | <ul><li></li></ul>                | <ul><li>min: 27 characters</li><li>mean: 52.45 characters</li><li>max: 151 characters</li></ul> |
         | 
| 348 | 
            +
            * Samples:
         | 
| 349 | 
            +
              | image                                                                                         | caption                                                                          |
         | 
| 350 | 
            +
              |:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
         | 
| 351 | 
            +
              | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x16B5EE1A550></code> | <code>A child holding a flowered umbrella and petting a yak.</code>              |
         | 
| 352 | 
            +
              | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x16B5E41C1D0></code> | <code>A young man holding an umbrella next to a herd of cattle.</code>           |
         | 
| 353 | 
            +
              | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x16B5F276AD0></code> | <code>a young boy barefoot holding an umbrella touching the horn of a cow</code> |
         | 
| 354 | 
            +
            * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
         | 
| 355 | 
            +
              ```json
         | 
| 356 | 
            +
              {
         | 
| 357 | 
            +
                  "scale": 20.0,
         | 
| 358 | 
            +
                  "similarity_fct": "cos_sim",
         | 
| 359 | 
            +
                  "gather_across_devices": false
         | 
| 360 | 
            +
              }
         | 
| 361 | 
            +
              ```
         | 
| 362 | 
            +
             | 
| 363 | 
            +
            ### Training Hyperparameters
         | 
| 364 | 
            +
            #### Non-Default Hyperparameters
         | 
| 365 | 
            +
             | 
| 366 | 
            +
            - `eval_strategy`: steps
         | 
| 367 | 
            +
            - `per_device_train_batch_size`: 16
         | 
| 368 | 
            +
            - `per_device_eval_batch_size`: 16
         | 
| 369 | 
            +
            - `learning_rate`: 2e-05
         | 
| 370 | 
            +
            - `num_train_epochs`: 1
         | 
| 371 | 
            +
            - `warmup_ratio`: 0.1
         | 
| 372 | 
            +
            - `bf16`: True
         | 
| 373 | 
            +
            - `batch_sampler`: no_duplicates
         | 
| 374 | 
            +
             | 
| 375 | 
            +
            #### All Hyperparameters
         | 
| 376 | 
            +
            <details><summary>Click to expand</summary>
         | 
| 377 | 
            +
             | 
| 378 | 
            +
            - `overwrite_output_dir`: False
         | 
| 379 | 
            +
            - `do_predict`: False
         | 
| 380 | 
            +
            - `eval_strategy`: steps
         | 
| 381 | 
            +
            - `prediction_loss_only`: True
         | 
| 382 | 
            +
            - `per_device_train_batch_size`: 16
         | 
| 383 | 
            +
            - `per_device_eval_batch_size`: 16
         | 
| 384 | 
            +
            - `gradient_accumulation_steps`: 1
         | 
| 385 | 
            +
            - `eval_accumulation_steps`: None
         | 
| 386 | 
            +
            - `torch_empty_cache_steps`: None
         | 
| 387 | 
            +
            - `learning_rate`: 2e-05
         | 
| 388 | 
            +
            - `weight_decay`: 0.0
         | 
| 389 | 
            +
            - `adam_beta1`: 0.9
         | 
| 390 | 
            +
            - `adam_beta2`: 0.999
         | 
| 391 | 
            +
            - `adam_epsilon`: 1e-08
         | 
| 392 | 
            +
            - `max_grad_norm`: 1.0
         | 
| 393 | 
            +
            - `num_train_epochs`: 1
         | 
| 394 | 
            +
            - `max_steps`: -1
         | 
| 395 | 
            +
            - `lr_scheduler_type`: linear
         | 
| 396 | 
            +
            - `lr_scheduler_kwargs`: {}
         | 
| 397 | 
            +
            - `warmup_ratio`: 0.1
         | 
| 398 | 
            +
            - `warmup_steps`: 0
         | 
| 399 | 
            +
            - `log_level`: passive
         | 
| 400 | 
            +
            - `log_level_replica`: warning
         | 
| 401 | 
            +
            - `log_on_each_node`: True
         | 
| 402 | 
            +
            - `logging_nan_inf_filter`: True
         | 
| 403 | 
            +
            - `save_safetensors`: True
         | 
| 404 | 
            +
            - `save_on_each_node`: False
         | 
| 405 | 
            +
            - `save_only_model`: False
         | 
| 406 | 
            +
            - `restore_callback_states_from_checkpoint`: False
         | 
| 407 | 
            +
            - `use_cpu`: False
         | 
| 408 | 
            +
            - `seed`: 42
         | 
| 409 | 
            +
            - `data_seed`: None
         | 
| 410 | 
            +
            - `jit_mode_eval`: False
         | 
| 411 | 
            +
            - `bf16`: True
         | 
| 412 | 
            +
            - `fp16`: False
         | 
| 413 | 
            +
            - `half_precision_backend`: None
         | 
| 414 | 
            +
            - `bf16_full_eval`: False
         | 
| 415 | 
            +
            - `fp16_full_eval`: False
         | 
| 416 | 
            +
            - `tf32`: None
         | 
| 417 | 
            +
            - `local_rank`: 0
         | 
| 418 | 
            +
            - `ddp_backend`: None
         | 
| 419 | 
            +
            - `tpu_num_cores`: None
         | 
| 420 | 
            +
            - `debug`: []
         | 
| 421 | 
            +
            - `dataloader_drop_last`: False
         | 
| 422 | 
            +
            - `dataloader_num_workers`: 0
         | 
| 423 | 
            +
            - `dataloader_prefetch_factor`: None
         | 
| 424 | 
            +
            - `past_index`: -1
         | 
| 425 | 
            +
            - `disable_tqdm`: False
         | 
| 426 | 
            +
            - `remove_unused_columns`: True
         | 
| 427 | 
            +
            - `label_names`: None
         | 
| 428 | 
            +
            - `load_best_model_at_end`: False
         | 
| 429 | 
            +
            - `ignore_data_skip`: False
         | 
| 430 | 
            +
            - `fsdp`: []
         | 
| 431 | 
            +
            - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
         | 
| 432 | 
            +
            - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
         | 
| 433 | 
            +
            - `parallelism_config`: None
         | 
| 434 | 
            +
            - `deepspeed`: None
         | 
| 435 | 
            +
            - `label_smoothing_factor`: 0.0
         | 
| 436 | 
            +
            - `optim`: adamw_torch_fused
         | 
| 437 | 
            +
            - `optim_args`: None
         | 
| 438 | 
            +
            - `group_by_length`: False
         | 
| 439 | 
            +
            - `length_column_name`: length
         | 
| 440 | 
            +
            - `ddp_find_unused_parameters`: None
         | 
| 441 | 
            +
            - `ddp_bucket_cap_mb`: None
         | 
| 442 | 
            +
            - `ddp_broadcast_buffers`: False
         | 
| 443 | 
            +
            - `dataloader_pin_memory`: True
         | 
| 444 | 
            +
            - `dataloader_persistent_workers`: False
         | 
| 445 | 
            +
            - `skip_memory_metrics`: True
         | 
| 446 | 
            +
            - `use_legacy_prediction_loop`: False
         | 
| 447 | 
            +
            - `push_to_hub`: False
         | 
| 448 | 
            +
            - `resume_from_checkpoint`: None
         | 
| 449 | 
            +
            - `hub_model_id`: None
         | 
| 450 | 
            +
            - `hub_strategy`: every_save
         | 
| 451 | 
            +
            - `hub_private_repo`: None
         | 
| 452 | 
            +
            - `hub_always_push`: False
         | 
| 453 | 
            +
            - `hub_revision`: None
         | 
| 454 | 
            +
            - `gradient_checkpointing`: False
         | 
| 455 | 
            +
            - `gradient_checkpointing_kwargs`: None
         | 
| 456 | 
            +
            - `include_for_metrics`: []
         | 
| 457 | 
            +
            - `eval_do_concat_batches`: True
         | 
| 458 | 
            +
            - `mp_parameters`: 
         | 
| 459 | 
            +
            - `auto_find_batch_size`: False
         | 
| 460 | 
            +
            - `full_determinism`: False
         | 
| 461 | 
            +
            - `ray_scope`: last
         | 
| 462 | 
            +
            - `ddp_timeout`: 1800
         | 
| 463 | 
            +
            - `torch_compile`: False
         | 
| 464 | 
            +
            - `torch_compile_backend`: None
         | 
| 465 | 
            +
            - `torch_compile_mode`: None
         | 
| 466 | 
            +
            - `include_tokens_per_second`: False
         | 
| 467 | 
            +
            - `include_num_input_tokens_seen`: no
         | 
| 468 | 
            +
            - `neftune_noise_alpha`: None
         | 
| 469 | 
            +
            - `optim_target_modules`: None
         | 
| 470 | 
            +
            - `batch_eval_metrics`: False
         | 
| 471 | 
            +
            - `eval_on_start`: False
         | 
| 472 | 
            +
            - `use_liger_kernel`: False
         | 
| 473 | 
            +
            - `liger_kernel_config`: None
         | 
| 474 | 
            +
            - `eval_use_gather_object`: False
         | 
| 475 | 
            +
            - `average_tokens_across_devices`: True
         | 
| 476 | 
            +
            - `prompts`: None
         | 
| 477 | 
            +
            - `batch_sampler`: no_duplicates
         | 
| 478 | 
            +
            - `multi_dataset_batch_sampler`: proportional
         | 
| 479 | 
            +
            - `router_mapping`: {}
         | 
| 480 | 
            +
            - `learning_rate_mapping`: {}
         | 
| 481 | 
            +
             | 
| 482 | 
            +
            </details>
         | 
| 483 | 
            +
             | 
| 484 | 
            +
            ### Training Logs
         | 
| 485 | 
            +
            | Epoch  | Step | Training Loss | Validation Loss | coco-eval_cosine_ndcg@10 | coco-test_cosine_ndcg@10 |
         | 
| 486 | 
            +
            |:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------------:|
         | 
| 487 | 
            +
            | -1     | -1   | -             | -               | 0.2242                   | -                        |
         | 
| 488 | 
            +
            | 0.0112 | 7    | 2.6924        | -               | -                        | -                        |
         | 
| 489 | 
            +
            | 0.0224 | 14   | 3.1613        | -               | -                        | -                        |
         | 
| 490 | 
            +
            | 0.0336 | 21   | 3.1706        | -               | -                        | -                        |
         | 
| 491 | 
            +
            | 0.0448 | 28   | 2.5607        | -               | -                        | -                        |
         | 
| 492 | 
            +
            | 0.056  | 35   | 2.5325        | -               | -                        | -                        |
         | 
| 493 | 
            +
            | 0.0672 | 42   | 2.353         | -               | -                        | -                        |
         | 
| 494 | 
            +
            | 0.0784 | 49   | 1.5503        | -               | -                        | -                        |
         | 
| 495 | 
            +
            | 0.0896 | 56   | 1.5149        | -               | -                        | -                        |
         | 
| 496 | 
            +
            | 0.1008 | 63   | 1.404         | 0.8206          | 0.7171                   | -                        |
         | 
| 497 | 
            +
            | 0.112  | 70   | 1.0411        | -               | -                        | -                        |
         | 
| 498 | 
            +
            | 0.1232 | 77   | 0.748         | -               | -                        | -                        |
         | 
| 499 | 
            +
            | 0.1344 | 84   | 0.5821        | -               | -                        | -                        |
         | 
| 500 | 
            +
            | 0.1456 | 91   | 0.3756        | -               | -                        | -                        |
         | 
| 501 | 
            +
            | 0.1568 | 98   | 0.7135        | -               | -                        | -                        |
         | 
| 502 | 
            +
            | 0.168  | 105  | 0.5058        | -               | -                        | -                        |
         | 
| 503 | 
            +
            | 0.1792 | 112  | 0.4432        | -               | -                        | -                        |
         | 
| 504 | 
            +
            | 0.1904 | 119  | 0.428         | -               | -                        | -                        |
         | 
| 505 | 
            +
            | 0.2016 | 126  | 0.3416        | 0.3792          | 0.8132                   | -                        |
         | 
| 506 | 
            +
            | 0.2128 | 133  | 0.2572        | -               | -                        | -                        |
         | 
| 507 | 
            +
            | 0.224  | 140  | 0.1803        | -               | -                        | -                        |
         | 
| 508 | 
            +
            | 0.2352 | 147  | 0.2389        | -               | -                        | -                        |
         | 
| 509 | 
            +
            | 0.2464 | 154  | 0.3825        | -               | -                        | -                        |
         | 
| 510 | 
            +
            | 0.2576 | 161  | 0.2629        | -               | -                        | -                        |
         | 
| 511 | 
            +
            | 0.2688 | 168  | 0.4079        | -               | -                        | -                        |
         | 
| 512 | 
            +
            | 0.28   | 175  | 0.2106        | -               | -                        | -                        |
         | 
| 513 | 
            +
            | 0.2912 | 182  | 0.2089        | -               | -                        | -                        |
         | 
| 514 | 
            +
            | 0.3024 | 189  | 0.2215        | 0.2772          | 0.8425                   | -                        |
         | 
| 515 | 
            +
            | 0.3136 | 196  | 0.2142        | -               | -                        | -                        |
         | 
| 516 | 
            +
            | 0.3248 | 203  | 0.2895        | -               | -                        | -                        |
         | 
| 517 | 
            +
            | 0.336  | 210  | 0.2901        | -               | -                        | -                        |
         | 
| 518 | 
            +
            | 0.3472 | 217  | 0.2332        | -               | -                        | -                        |
         | 
| 519 | 
            +
            | 0.3584 | 224  | 0.2538        | -               | -                        | -                        |
         | 
| 520 | 
            +
            | 0.3696 | 231  | 0.1969        | -               | -                        | -                        |
         | 
| 521 | 
            +
            | 0.3808 | 238  | 0.2055        | -               | -                        | -                        |
         | 
| 522 | 
            +
            | 0.392  | 245  | 0.2135        | -               | -                        | -                        |
         | 
| 523 | 
            +
            | 0.4032 | 252  | 0.2177        | 0.2362          | 0.8513                   | -                        |
         | 
| 524 | 
            +
            | 0.4144 | 259  | 0.2228        | -               | -                        | -                        |
         | 
| 525 | 
            +
            | 0.4256 | 266  | 0.3378        | -               | -                        | -                        |
         | 
| 526 | 
            +
            | 0.4368 | 273  | 0.1516        | -               | -                        | -                        |
         | 
| 527 | 
            +
            | 0.448  | 280  | 0.1068        | -               | -                        | -                        |
         | 
| 528 | 
            +
            | 0.4592 | 287  | 0.1817        | -               | -                        | -                        |
         | 
| 529 | 
            +
            | 0.4704 | 294  | 0.1007        | -               | -                        | -                        |
         | 
| 530 | 
            +
            | 0.4816 | 301  | 0.1488        | -               | -                        | -                        |
         | 
| 531 | 
            +
            | 0.4928 | 308  | 0.1713        | -               | -                        | -                        |
         | 
| 532 | 
            +
            | 0.504  | 315  | 0.1963        | 0.2124          | 0.8633                   | -                        |
         | 
| 533 | 
            +
            | 0.5152 | 322  | 0.2033        | -               | -                        | -                        |
         | 
| 534 | 
            +
            | 0.5264 | 329  | 0.1321        | -               | -                        | -                        |
         | 
| 535 | 
            +
            | 0.5376 | 336  | 0.1642        | -               | -                        | -                        |
         | 
| 536 | 
            +
            | 0.5488 | 343  | 0.1352        | -               | -                        | -                        |
         | 
| 537 | 
            +
            | 0.56   | 350  | 0.1918        | -               | -                        | -                        |
         | 
| 538 | 
            +
            | 0.5712 | 357  | 0.1315        | -               | -                        | -                        |
         | 
| 539 | 
            +
            | 0.5824 | 364  | 0.2275        | -               | -                        | -                        |
         | 
| 540 | 
            +
            | 0.5936 | 371  | 0.0844        | -               | -                        | -                        |
         | 
| 541 | 
            +
            | 0.6048 | 378  | 0.0854        | 0.2052          | 0.8689                   | -                        |
         | 
| 542 | 
            +
            | 0.616  | 385  | 0.1572        | -               | -                        | -                        |
         | 
| 543 | 
            +
            | 0.6272 | 392  | 0.1111        | -               | -                        | -                        |
         | 
| 544 | 
            +
            | 0.6384 | 399  | 0.1958        | -               | -                        | -                        |
         | 
| 545 | 
            +
            | 0.6496 | 406  | 0.0896        | -               | -                        | -                        |
         | 
| 546 | 
            +
            | 0.6608 | 413  | 0.1532        | -               | -                        | -                        |
         | 
| 547 | 
            +
            | 0.672  | 420  | 0.1387        | -               | -                        | -                        |
         | 
| 548 | 
            +
            | 0.6832 | 427  | 0.0942        | -               | -                        | -                        |
         | 
| 549 | 
            +
            | 0.6944 | 434  | 0.1696        | -               | -                        | -                        |
         | 
| 550 | 
            +
            | 0.7056 | 441  | 0.1501        | 0.1898          | 0.8742                   | -                        |
         | 
| 551 | 
            +
            | 0.7168 | 448  | 0.143         | -               | -                        | -                        |
         | 
| 552 | 
            +
            | 0.728  | 455  | 0.1221        | -               | -                        | -                        |
         | 
| 553 | 
            +
            | 0.7392 | 462  | 0.1082        | -               | -                        | -                        |
         | 
| 554 | 
            +
            | 0.7504 | 469  | 0.1601        | -               | -                        | -                        |
         | 
| 555 | 
            +
            | 0.7616 | 476  | 0.1504        | -               | -                        | -                        |
         | 
| 556 | 
            +
            | 0.7728 | 483  | 0.1513        | -               | -                        | -                        |
         | 
| 557 | 
            +
            | 0.784  | 490  | 0.1108        | -               | -                        | -                        |
         | 
| 558 | 
            +
            | 0.7952 | 497  | 0.1086        | -               | -                        | -                        |
         | 
| 559 | 
            +
            | 0.8064 | 504  | 0.11          | 0.1689          | 0.8782                   | -                        |
         | 
| 560 | 
            +
            | 0.8176 | 511  | 0.1562        | -               | -                        | -                        |
         | 
| 561 | 
            +
            | 0.8288 | 518  | 0.1291        | -               | -                        | -                        |
         | 
| 562 | 
            +
            | 0.84   | 525  | 0.0687        | -               | -                        | -                        |
         | 
| 563 | 
            +
            | 0.8512 | 532  | 0.0966        | -               | -                        | -                        |
         | 
| 564 | 
            +
            | 0.8624 | 539  | 0.0977        | -               | -                        | -                        |
         | 
| 565 | 
            +
            | 0.8736 | 546  | 0.089         | -               | -                        | -                        |
         | 
| 566 | 
            +
            | 0.8848 | 553  | 0.0697        | -               | -                        | -                        |
         | 
| 567 | 
            +
            | 0.896  | 560  | 0.0561        | -               | -                        | -                        |
         | 
| 568 | 
            +
            | 0.9072 | 567  | 0.1078        | 0.1779          | 0.8860                   | -                        |
         | 
| 569 | 
            +
            | 0.9184 | 574  | 0.1425        | -               | -                        | -                        |
         | 
| 570 | 
            +
            | 0.9296 | 581  | 0.1273        | -               | -                        | -                        |
         | 
| 571 | 
            +
            | 0.9408 | 588  | 0.1215        | -               | -                        | -                        |
         | 
| 572 | 
            +
            | 0.952  | 595  | 0.1311        | -               | -                        | -                        |
         | 
| 573 | 
            +
            | 0.9632 | 602  | 0.0512        | -               | -                        | -                        |
         | 
| 574 | 
            +
            | 0.9744 | 609  | 0.0735        | -               | -                        | -                        |
         | 
| 575 | 
            +
            | 0.9856 | 616  | 0.1125        | -               | -                        | -                        |
         | 
| 576 | 
            +
            | 0.9968 | 623  | 0.1359        | -               | -                        | -                        |
         | 
| 577 | 
            +
            | -1     | -1   | -             | -               | -                        | 0.8849                   |
         | 
| 578 | 
            +
             | 
| 579 | 
            +
             | 
| 580 | 
            +
            ### Environmental Impact
         | 
| 581 | 
            +
            Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
         | 
| 582 | 
            +
            - **Energy Consumed**: 0.054 kWh
         | 
| 583 | 
            +
            - **Carbon Emitted**: 0.015 kg of CO2
         | 
| 584 | 
            +
            - **Hours Used**: 0.169 hours
         | 
| 585 | 
            +
             | 
| 586 | 
            +
            ### Training Hardware
         | 
| 587 | 
            +
            - **On Cloud**: No
         | 
| 588 | 
            +
            - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
         | 
| 589 | 
            +
            - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
         | 
| 590 | 
            +
            - **RAM Size**: 31.78 GB
         | 
| 591 | 
            +
             | 
| 592 | 
            +
            ### Framework Versions
         | 
| 593 | 
            +
            - Python: 3.11.6
         | 
| 594 | 
            +
            - Sentence Transformers: 5.2.0.dev0
         | 
| 595 | 
            +
            - Transformers: 4.57.0.dev0
         | 
| 596 | 
            +
            - PyTorch: 2.8.0+cu128
         | 
| 597 | 
            +
            - Accelerate: 1.6.0
         | 
| 598 | 
            +
            - Datasets: 3.6.0
         | 
| 599 | 
            +
            - Tokenizers: 0.22.1
         | 
| 600 | 
            +
             | 
| 601 | 
            +
            ## Citation
         | 
| 602 | 
            +
             | 
| 603 | 
            +
            ### BibTeX
         | 
| 604 | 
            +
             | 
| 605 | 
            +
            #### Sentence Transformers
         | 
| 606 | 
            +
            ```bibtex
         | 
| 607 | 
            +
            @inproceedings{reimers-2019-sentence-bert,
         | 
| 608 | 
            +
                title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
         | 
| 609 | 
            +
                author = "Reimers, Nils and Gurevych, Iryna",
         | 
| 610 | 
            +
                booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
         | 
| 611 | 
            +
                month = "11",
         | 
| 612 | 
            +
                year = "2019",
         | 
| 613 | 
            +
                publisher = "Association for Computational Linguistics",
         | 
| 614 | 
            +
                url = "https://arxiv.org/abs/1908.10084",
         | 
| 615 | 
            +
            }
         | 
| 616 | 
            +
            ```
         | 
| 617 | 
            +
             | 
| 618 | 
            +
            #### MultipleNegativesRankingLoss
         | 
| 619 | 
            +
            ```bibtex
         | 
| 620 | 
            +
            @misc{henderson2017efficient,
         | 
| 621 | 
            +
                title={Efficient Natural Language Response Suggestion for Smart Reply},
         | 
| 622 | 
            +
                author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
         | 
| 623 | 
            +
                year={2017},
         | 
| 624 | 
            +
                eprint={1705.00652},
         | 
| 625 | 
            +
                archivePrefix={arXiv},
         | 
| 626 | 
            +
                primaryClass={cs.CL}
         | 
| 627 | 
            +
            }
         | 
| 628 | 
            +
            ```
         | 
| 629 | 
            +
             | 
| 630 | 
            +
            <!--
         | 
| 631 | 
            +
            ## Glossary
         | 
| 632 | 
            +
             | 
| 633 | 
            +
            *Clearly define terms in order to be accessible across audiences.*
         | 
| 634 | 
            +
            -->
         | 
| 635 | 
            +
             | 
| 636 | 
            +
            <!--
         | 
| 637 | 
            +
            ## Model Card Authors
         | 
| 638 | 
            +
             | 
| 639 | 
            +
            *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
         | 
| 640 | 
            +
            -->
         | 
| 641 | 
            +
             | 
| 642 | 
            +
            <!--
         | 
| 643 | 
            +
            ## Model Card Contact
         | 
| 644 | 
            +
             | 
| 645 | 
            +
            *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
         | 
| 646 | 
            +
            -->
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "SiglipModel"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "dtype": "float32",
         | 
| 6 | 
            +
              "initializer_factor": 1.0,
         | 
| 7 | 
            +
              "model_type": "siglip",
         | 
| 8 | 
            +
              "text_config": {
         | 
| 9 | 
            +
                "attention_dropout": 0.0,
         | 
| 10 | 
            +
                "dtype": "float32",
         | 
| 11 | 
            +
                "hidden_act": "gelu_pytorch_tanh",
         | 
| 12 | 
            +
                "hidden_size": 768,
         | 
| 13 | 
            +
                "intermediate_size": 3072,
         | 
| 14 | 
            +
                "layer_norm_eps": 1e-06,
         | 
| 15 | 
            +
                "max_position_embeddings": 64,
         | 
| 16 | 
            +
                "model_type": "siglip_text_model",
         | 
| 17 | 
            +
                "num_attention_heads": 12,
         | 
| 18 | 
            +
                "num_hidden_layers": 12,
         | 
| 19 | 
            +
                "projection_size": 768,
         | 
| 20 | 
            +
                "vocab_size": 32000
         | 
| 21 | 
            +
              },
         | 
| 22 | 
            +
              "transformers_version": "4.57.0.dev0",
         | 
| 23 | 
            +
              "vision_config": {
         | 
| 24 | 
            +
                "attention_dropout": 0.0,
         | 
| 25 | 
            +
                "dtype": "float32",
         | 
| 26 | 
            +
                "hidden_act": "gelu_pytorch_tanh",
         | 
| 27 | 
            +
                "hidden_size": 768,
         | 
| 28 | 
            +
                "image_size": 512,
         | 
| 29 | 
            +
                "intermediate_size": 3072,
         | 
| 30 | 
            +
                "layer_norm_eps": 1e-06,
         | 
| 31 | 
            +
                "model_type": "siglip_vision_model",
         | 
| 32 | 
            +
                "num_attention_heads": 12,
         | 
| 33 | 
            +
                "num_channels": 3,
         | 
| 34 | 
            +
                "num_hidden_layers": 12,
         | 
| 35 | 
            +
                "patch_size": 16
         | 
| 36 | 
            +
              }
         | 
| 37 | 
            +
            }
         | 
    	
        config_sentence_transformers.json
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "model_type": "SentenceTransformer",
         | 
| 3 | 
            +
              "__version__": {
         | 
| 4 | 
            +
                "sentence_transformers": "5.2.0.dev0",
         | 
| 5 | 
            +
                "transformers": "4.57.0.dev0",
         | 
| 6 | 
            +
                "pytorch": "2.8.0+cu128"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              "prompts": {
         | 
| 9 | 
            +
                "query": "",
         | 
| 10 | 
            +
                "document": ""
         | 
| 11 | 
            +
              },
         | 
| 12 | 
            +
              "default_prompt_name": null,
         | 
| 13 | 
            +
              "similarity_fn_name": "cosine"
         | 
| 14 | 
            +
            }
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ecf495ea7c4acb8a9b426f035ab89bf5d0fb9717d5c9b268871187b988f6bf93
         | 
| 3 | 
            +
            size 815215944
         | 
    	
        modules.json
    ADDED
    
    | @@ -0,0 +1,8 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "idx": 0,
         | 
| 4 | 
            +
                "name": "0",
         | 
| 5 | 
            +
                "path": "",
         | 
| 6 | 
            +
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            +
              }
         | 
| 8 | 
            +
            ]
         | 
    	
        sentence_bert_config.json
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "transformer_task": "feature-extraction",
         | 
| 3 | 
            +
                "modality_config": {
         | 
| 4 | 
            +
                    "text": {
         | 
| 5 | 
            +
                        "method": "get_text_features",
         | 
| 6 | 
            +
                        "method_output_name": null
         | 
| 7 | 
            +
                    },
         | 
| 8 | 
            +
                    "image": {
         | 
| 9 | 
            +
                        "method": "get_image_features",
         | 
| 10 | 
            +
                        "method_output_name": null
         | 
| 11 | 
            +
                    }
         | 
| 12 | 
            +
                },
         | 
| 13 | 
            +
                "module_output_name": "sentence_embedding"
         | 
| 14 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,23 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "eos_token": {
         | 
| 3 | 
            +
                "content": "</s>",
         | 
| 4 | 
            +
                "lstrip": true,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": true,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "pad_token": {
         | 
| 10 | 
            +
                "content": "</s>",
         | 
| 11 | 
            +
                "lstrip": true,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": true,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "unk_token": {
         | 
| 17 | 
            +
                "content": "<unk>",
         | 
| 18 | 
            +
                "lstrip": true,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": true,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              }
         | 
| 23 | 
            +
            }
         | 
    	
        spiece.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1e5036bed065526c3c212dfbe288752391797c4bb1a284aa18c9a0b23fcaf8ec
         | 
| 3 | 
            +
            size 798330
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,35 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "1": {
         | 
| 4 | 
            +
                  "content": "</s>",
         | 
| 5 | 
            +
                  "lstrip": true,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": true,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "2": {
         | 
| 12 | 
            +
                  "content": "<unk>",
         | 
| 13 | 
            +
                  "lstrip": true,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": true,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                }
         | 
| 19 | 
            +
              },
         | 
| 20 | 
            +
              "additional_special_tokens": [],
         | 
| 21 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 22 | 
            +
              "do_convert_rgb": true,
         | 
| 23 | 
            +
              "do_lower_case": true,
         | 
| 24 | 
            +
              "eos_token": "</s>",
         | 
| 25 | 
            +
              "extra_special_tokens": {},
         | 
| 26 | 
            +
              "model_input_names": [
         | 
| 27 | 
            +
                "input_ids"
         | 
| 28 | 
            +
              ],
         | 
| 29 | 
            +
              "model_max_length": 64,
         | 
| 30 | 
            +
              "pad_token": "</s>",
         | 
| 31 | 
            +
              "processor_class": "SiglipProcessor",
         | 
| 32 | 
            +
              "sp_model_kwargs": {},
         | 
| 33 | 
            +
              "tokenizer_class": "SiglipTokenizer",
         | 
| 34 | 
            +
              "unk_token": "<unk>"
         | 
| 35 | 
            +
            }
         | 
