TunBERT / modeling_tunbert.py
not-lain's picture
fix typo
fb3cc84 verified
raw
history blame
2.22 kB
import torch
import torch.nn as nn
from transformers import PreTrainedModel, BertModel
from transformers.modeling_outputs import SequenceClassifierOutput
from .config_tunbert import TunBertConfig
class classifier(nn.Module):
def __init__(self,config):
super().__init__()
self.layer0 = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=True)
self.layer1 = nn.Linear(in_features=config.hidden_size, out_features=config.type_vocab_size, bias=True)
def forward(self,tensor):
out1 = self.layer0(tensor)
return self.layer1(out1)
class TunBERT(PreTrainedModel):
config_class = TunBertConfig
def __init__(self, config):
super().__init__(config)
self.BertModel = BertModel(config)
self.dropout = nn.Dropout(p=0.1, inplace=False)
self.classifier = classifier(config)
def forward(self,input_ids=None,token_type_ids=None,attention_mask=None,labels=None) :
outputs = self.BertModel(input_ids,token_type_ids,attention_mask)
sequence_output = self.dropout(outputs.last_hidden_state)
logits = self.classifier(sequence_output)
# every sentence is surrounded by [cls] in the beginning and [sep] in the end
# the [cls] token is used in bert to identify the class of the sentence
# meaning that we need only the first token of each sentence
# and the model representation of the rest of the sentence does not concern us
logits = logits[:,0,:] # [bs, seq, class]
loss =None
if labels is not None :
loss_func = nn.CrossEntropyLoss()
loss = loss_func(logits.view(-1,self.config.type_vocab_size),labels.view(-1))
return SequenceClassifierOutput(loss = loss, logits= logits, hidden_states=outputs.last_hidden_state,attentions=outputs.attentions)
def process(self,**inputs):
with torch.no_grad():
out = self.forward(**inputs)
out = torch.argmax(out.logits,dim=1)
return ["positive" if index == 0 else "negative" for index in out.tolist()]
TunBertConfig.register_for_auto_class()
TunBERT.register_for_auto_class("AutoModelForSequenceClassification")