add process method
Browse files- modeling_tunbert.py +7 -0
modeling_tunbert.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import torch.nn as nn
|
| 2 |
from transformers import PreTrainedModel, BertModel
|
| 3 |
from transformers.modeling_outputs import SequenceClassifierOutput
|
|
@@ -38,6 +39,12 @@ class TunBERT(PreTrainedModel):
|
|
| 38 |
loss = loss_func(logits.view(-1,self.config.type_vocab_size),labels.view(-1))
|
| 39 |
return SequenceClassifierOutput(loss = loss, logits= logits, hidden_states=outputs.last_hidden_state,attentions=outputs.attentions)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
TunBertConfig.register_for_auto_class()
|
| 43 |
TunBERT.register_for_auto_class("AutoModelForSequenceClassification")
|
|
|
|
| 1 |
+
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
from transformers import PreTrainedModel, BertModel
|
| 4 |
from transformers.modeling_outputs import SequenceClassifierOutput
|
|
|
|
| 39 |
loss = loss_func(logits.view(-1,self.config.type_vocab_size),labels.view(-1))
|
| 40 |
return SequenceClassifierOutput(loss = loss, logits= logits, hidden_states=outputs.last_hidden_state,attentions=outputs.attentions)
|
| 41 |
|
| 42 |
+
def process(self,**inputs):
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
out = self.forward(**inputs)
|
| 45 |
+
out = torch.argmax(output.logits,dim=1)
|
| 46 |
+
return ["positive" if index == 0 else "negative" for index in out.tolist()]
|
| 47 |
+
|
| 48 |
|
| 49 |
TunBertConfig.register_for_auto_class()
|
| 50 |
TunBERT.register_for_auto_class("AutoModelForSequenceClassification")
|