File size: 8,699 Bytes
d77b719 24a70a7 d77b719 24a70a7 d77b719 24a70a7 d77b719 24a70a7 d77b719 24a70a7 e389c19 24a70a7 d77b719 51abd45 092cc87 51abd45 d77b719 24a70a7 d77b719 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
library_name: transformers
license: mit
base_model: intfloat/multilingual-e5-large-instruct
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: multilingual-e5-large-instruct-edu-scorer-lr5e5-bs32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-e5-large-instruct-edu-scorer-lr5e5-bs32
This model is a fine-tuned version of [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0423
- Precision: 0.4783
- Recall: 0.3533
- F1 Macro: 0.3508
- Accuracy: 0.38
## Model description
More information needed
## Intended uses & limitations
More information needed
## Test results
Binary classification accuracy (threshold at label 3) ≈ 82.00%
Test Report:
```
precision recall f1-score support
0 0.78 0.54 0.64 100
1 0.31 0.34 0.33 100
2 0.33 0.50 0.40 100
3 0.29 0.47 0.36 100
4 0.41 0.21 0.28 100
5 0.75 0.06 0.11 50
accuracy 0.38 550
macro avg 0.48 0.35 0.35 550
weighted avg 0.45 0.38 0.37 550
```
Confusion Matrix:
```
[[54 37 8 1 0 0]
[13 34 40 12 1 0]
[ 2 28 50 19 1 0]
[ 0 9 35 47 8 1]
[ 0 1 17 61 21 0]
[ 0 0 3 24 20 3]]
Test metrics
```
epoch = 20.0
eval_accuracy = 0.38
eval_f1_macro = 0.3508
eval_loss = 1.0423
eval_precision = 0.4783
eval_recall = 0.3533
eval_runtime = 0:00:05.99
eval_samples_per_second = 91.782
eval_steps_per_second = 3.004
```
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|
| No log | 0 | 0 | 4.0694 | 0.0587 | 0.1667 | 0.0869 | 0.3524 |
| 0.834 | 0.3368 | 1000 | 0.7770 | 0.4163 | 0.3268 | 0.3177 | 0.4876 |
| 0.8535 | 0.6736 | 2000 | 0.9632 | 0.3999 | 0.3404 | 0.3236 | 0.3578 |
| 0.7996 | 1.0104 | 3000 | 0.8151 | 0.4568 | 0.3298 | 0.3278 | 0.5098 |
| 0.8055 | 1.3473 | 4000 | 0.8134 | 0.4109 | 0.3380 | 0.3268 | 0.3946 |
| 0.7807 | 1.6841 | 5000 | 0.7303 | 0.4170 | 0.3698 | 0.3717 | 0.4824 |
| 0.7628 | 2.0209 | 6000 | 0.8066 | 0.4310 | 0.3406 | 0.3296 | 0.3928 |
| 0.7737 | 2.3577 | 7000 | 0.7125 | 0.4856 | 0.3456 | 0.3491 | 0.5032 |
| 0.7246 | 2.6945 | 8000 | 0.7268 | 0.5744 | 0.3593 | 0.3612 | 0.4676 |
| 0.7179 | 3.0313 | 9000 | 0.7028 | 0.4875 | 0.3668 | 0.3726 | 0.4916 |
| 0.715 | 3.3681 | 10000 | 0.6926 | 0.4094 | 0.3570 | 0.3583 | 0.5116 |
| 0.696 | 3.7050 | 11000 | 0.7401 | 0.4944 | 0.3689 | 0.3685 | 0.459 |
| 0.7221 | 4.0418 | 12000 | 0.6773 | 0.5800 | 0.3632 | 0.3707 | 0.5256 |
| 0.7425 | 4.3786 | 13000 | 0.7350 | 0.4280 | 0.3918 | 0.3939 | 0.489 |
| 0.7426 | 4.7154 | 14000 | 0.7564 | 0.4749 | 0.3715 | 0.3711 | 0.4656 |
| 0.6576 | 5.0522 | 15000 | 0.6928 | 0.4105 | 0.3515 | 0.3527 | 0.5278 |
| 0.7033 | 5.3890 | 16000 | 0.6894 | 0.4532 | 0.3863 | 0.3908 | 0.5138 |
| 0.6813 | 5.7258 | 17000 | 0.6655 | 0.4101 | 0.3506 | 0.3380 | 0.5216 |
| 0.6653 | 6.0626 | 18000 | 0.6813 | 0.4161 | 0.3429 | 0.3404 | 0.5248 |
| 0.7086 | 6.3995 | 19000 | 0.6744 | 0.5219 | 0.3909 | 0.4010 | 0.5076 |
| 0.6658 | 6.7363 | 20000 | 0.6524 | 0.5000 | 0.3788 | 0.3852 | 0.5226 |
| 0.6843 | 7.0731 | 21000 | 0.6561 | 0.4176 | 0.3527 | 0.3502 | 0.5256 |
| 0.6927 | 7.4099 | 22000 | 0.6783 | 0.4554 | 0.3810 | 0.3843 | 0.5006 |
| 0.6708 | 7.7467 | 23000 | 0.7420 | 0.3982 | 0.3270 | 0.3197 | 0.516 |
| 0.646 | 8.0835 | 24000 | 0.6684 | 0.4776 | 0.3820 | 0.3890 | 0.491 |
| 0.6577 | 8.4203 | 25000 | 0.6562 | 0.4946 | 0.3718 | 0.3783 | 0.5358 |
| 0.68 | 8.7572 | 26000 | 0.6628 | 0.4841 | 0.3940 | 0.4032 | 0.5168 |
| 0.6827 | 9.0940 | 27000 | 0.6508 | 0.4947 | 0.3715 | 0.3753 | 0.5104 |
| 0.6611 | 9.4308 | 28000 | 0.6434 | 0.5237 | 0.3862 | 0.3981 | 0.5378 |
| 0.6147 | 9.7676 | 29000 | 0.6597 | 0.4199 | 0.3584 | 0.3590 | 0.5376 |
| 0.638 | 10.1044 | 30000 | 0.6330 | 0.5038 | 0.3851 | 0.3902 | 0.5342 |
| 0.6286 | 10.4412 | 31000 | 0.6579 | 0.4508 | 0.3865 | 0.3926 | 0.5 |
| 0.6352 | 10.7780 | 32000 | 0.6586 | 0.4467 | 0.3917 | 0.3982 | 0.5096 |
| 0.6369 | 11.1149 | 33000 | 0.6365 | 0.4970 | 0.3846 | 0.3911 | 0.5248 |
| 0.624 | 11.4517 | 34000 | 0.7212 | 0.4463 | 0.3806 | 0.3796 | 0.457 |
| 0.6502 | 11.7885 | 35000 | 0.6419 | 0.4002 | 0.3771 | 0.3743 | 0.5274 |
| 0.6133 | 12.1253 | 36000 | 0.6765 | 0.3968 | 0.3506 | 0.3457 | 0.535 |
| 0.604 | 12.4621 | 37000 | 0.6361 | 0.4637 | 0.3833 | 0.3908 | 0.5334 |
| 0.6426 | 12.7989 | 38000 | 0.6376 | 0.4137 | 0.3631 | 0.3639 | 0.5352 |
| 0.6227 | 13.1357 | 39000 | 0.6637 | 0.4176 | 0.3579 | 0.3554 | 0.5406 |
| 0.6275 | 13.4725 | 40000 | 0.6446 | 0.4482 | 0.3989 | 0.4050 | 0.528 |
| 0.6545 | 13.8094 | 41000 | 0.6526 | 0.3960 | 0.3524 | 0.3479 | 0.534 |
| 0.5786 | 14.1462 | 42000 | 0.6280 | 0.4445 | 0.3847 | 0.3907 | 0.5358 |
| 0.6123 | 14.4830 | 43000 | 0.6351 | 0.4075 | 0.3799 | 0.3805 | 0.5234 |
| 0.5885 | 14.8198 | 44000 | 0.6633 | 0.4102 | 0.3775 | 0.3743 | 0.4986 |
| 0.6052 | 15.1566 | 45000 | 0.6437 | 0.4354 | 0.3940 | 0.3968 | 0.5226 |
| 0.6066 | 15.4934 | 46000 | 0.6305 | 0.4056 | 0.3724 | 0.3732 | 0.5382 |
| 0.6106 | 15.8302 | 47000 | 0.6317 | 0.4078 | 0.3802 | 0.3818 | 0.5298 |
| 0.5995 | 16.1671 | 48000 | 0.6644 | 0.4267 | 0.3933 | 0.3947 | 0.5078 |
| 0.6001 | 16.5039 | 49000 | 0.6294 | 0.4152 | 0.3830 | 0.3839 | 0.5424 |
| 0.5553 | 16.8407 | 50000 | 0.6293 | 0.4150 | 0.3829 | 0.3838 | 0.5448 |
| 0.5787 | 17.1775 | 51000 | 0.6284 | 0.4143 | 0.3813 | 0.3829 | 0.5404 |
| 0.5724 | 17.5143 | 52000 | 0.6255 | 0.4178 | 0.3810 | 0.3819 | 0.544 |
| 0.5558 | 17.8511 | 53000 | 0.6251 | 0.4187 | 0.3827 | 0.3840 | 0.539 |
| 0.533 | 18.1879 | 54000 | 0.6263 | 0.4175 | 0.3816 | 0.3824 | 0.538 |
| 0.5612 | 18.5248 | 55000 | 0.6302 | 0.4122 | 0.3870 | 0.3880 | 0.5382 |
| 0.5594 | 18.8616 | 56000 | 0.6230 | 0.4203 | 0.3800 | 0.3807 | 0.5402 |
| 0.565 | 19.1984 | 57000 | 0.6264 | 0.4117 | 0.3789 | 0.3799 | 0.5346 |
| 0.5533 | 19.5352 | 58000 | 0.6261 | 0.4153 | 0.3825 | 0.3837 | 0.537 |
| 0.5459 | 19.8720 | 59000 | 0.6289 | 0.4128 | 0.3846 | 0.3853 | 0.5342 |
### Framework versions
- Transformers 4.53.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
|