File size: 8,904 Bytes
8357c72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "fa3b9b85-762d-4a0b-a0f2-70c9a6aa59b9",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import torch\n",
"from safetensors import safe_open\n",
"from model import Transformer as Model\n",
"from transformers import PreTrainedTokenizerFast\n",
"\n",
"with open(\"./config.json\", \"r\") as f:\n",
" config = json.load(f)\n",
"\n",
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
"torch.set_default_device(device)\n",
"\n",
"model = Model(**config)\n",
"model.zero_grad()\n",
"model.bfloat16()\n",
"\n",
"saved_states = {}\n",
"with safe_open(\"./model.safetensors\", framework=\"pt\", device=device) as f:\n",
" for key in f.keys():\n",
" saved_states[key] = f.get_tensor(key)\n",
"model.load_state_dict(saved_states)\n",
"model.eval()\n",
"\n",
"tokenizer = PreTrainedTokenizerFast.from_pretrained(\"./\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fe7449b5-0993-40e5-89f3-d9f0e5196839",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<s> def fibonacci(n: int):\n",
" if n < 2:\n",
" return n\n",
" return fibonacci(n - 1) + fibonacci(n - 2)\n",
"\n",
"\n",
"def fibonacci_recursive(n: int):\n",
" if n < 2:\n",
" return n\n",
" return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)\n",
"\n",
"\n",
"def fibonacci_iterative(n: int):\n",
" if n < 2:\n",
" return n\n",
" return fibonacci_iterative"
]
}
],
"source": [
"tokens = tokenizer('''def fibonacci(n: int):''')['input_ids']\n",
"\n",
"current = tokenizer.decode(tokens)\n",
"print(current, end=\"\")\n",
"\n",
"temperature = 1e-4\n",
"\n",
"for _ in range(128):\n",
"\n",
" tok = torch.tensor(tokens).reshape(1, -1)\n",
" \n",
" logits = model(tok)\n",
"\n",
" nxt = torch.multinomial(torch.softmax(logits[:, -1].float()/temperature, dim=-1).squeeze(), num_samples=1).item()\n",
" \n",
" tokens += [nxt]\n",
"\n",
" print(tokenizer.decode(tokens).replace(current, \"\", 1), end=\"\")\n",
" \n",
" current = tokenizer.decode(tokens)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f053099d-acf4-4432-9c27-1a0f9d9352c1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<s> Digits of pi:\n",
"\n",
"# What is the value of pi?\n",
"\n",
"## What is the value of pi?\n",
"\n",
"The value of pi is 3.14159265358979323846273284627328462732846273284627328462732846273284627328462732846273284627328462"
]
}
],
"source": [
"tokens = tokenizer('''Digits of pi:''')['input_ids']\n",
"\n",
"current = tokenizer.decode(tokens)\n",
"print(current, end=\"\")\n",
"\n",
"temperature = 1e-4\n",
"\n",
"for _ in range(128):\n",
"\n",
" tok = torch.tensor(tokens).reshape(1, -1)\n",
" \n",
" logits = model(tok)\n",
"\n",
" nxt = torch.multinomial(torch.softmax(logits[:, -1].float()/temperature, dim=-1).squeeze(), num_samples=1).item()\n",
" \n",
" tokens += [nxt]\n",
"\n",
" print(tokenizer.decode(tokens).replace(current, \"\", 1), end=\"\")\n",
" \n",
" current = tokenizer.decode(tokens)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "aca6f531-0267-44dc-a632-8d249c0bf3fd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<s> The chemical formula for water is H2O. What does it mean?\n",
"The chemical formula for water is H2O. What does it mean?\n",
"Water is the purest liquid on Earth. It is the basis of life. Water is found in the soil, rivers, lakes, oceans, and the ocean. Water is also found in our bodies. Water is found in everything we take in on a daily basis. Water is essential for life. Water is found in the cells, tissues, and organs of all living things. Water is a key element of life because it enables the creation and maintenance of the various chemical and physical processes"
]
}
],
"source": [
"tokens = tokenizer('''The chemical formula for water is''')['input_ids']\n",
"\n",
"current = tokenizer.decode(tokens)\n",
"print(current, end=\"\")\n",
"\n",
"temperature = 7e-1\n",
"\n",
"for _ in range(128):\n",
"\n",
" tok = torch.tensor(tokens).reshape(1, -1)\n",
" \n",
" logits = model(tok)\n",
"\n",
" nxt = torch.multinomial(torch.softmax(logits[:, -1].float()/temperature, dim=-1).squeeze(), num_samples=1).item()\n",
" \n",
" tokens += [nxt]\n",
"\n",
" print(tokenizer.decode(tokens).replace(current, \"\", 1), end=\"\")\n",
" \n",
" current = tokenizer.decode(tokens)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "72220140-d4c3-4f4a-9d8a-0677e66d8b05",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<s> The purpose of life is to build up the body’s strength, endurance, and energy reserves through the accumulation of acquired skills, and to get rid of worn or damaged parts of the body. All of this depends on day’s activities and deeds. The process of building up the body and taking on new challenges, such as accumulating health, will require the use of skills and abilities.\n",
"The main purpose of building up skills and abilities in life is to make new people capable of doing the things that they need to do. This process requires you to develop skills that are applicable to everyday life. Skills can either be formal, or in the"
]
}
],
"source": [
"tokens = tokenizer('''The purpose of life is to''')['input_ids']\n",
"\n",
"current = tokenizer.decode(tokens)\n",
"print(current, end=\"\")\n",
"\n",
"temperature = 8e-1\n",
"\n",
"for _ in range(128):\n",
"\n",
" tok = torch.tensor(tokens).reshape(1, -1)\n",
" \n",
" logits = model(tok)\n",
"\n",
" nxt = torch.multinomial(torch.softmax(logits[:, -1].float()/temperature, dim=-1).squeeze(), num_samples=1).item()\n",
" \n",
" tokens += [nxt]\n",
"\n",
" print(tokenizer.decode(tokens).replace(current, \"\", 1), end=\"\")\n",
" \n",
" current = tokenizer.decode(tokens)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "a6f71778-01e8-40b0-b4c0-ef3e7e934e66",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<s> Charles Darwin: The Origin of Species\n",
"Suggested Citation: (Author's description, 2007-08-02)\n",
"In the early 1900s the scientific community found that Darwin's theories would provide a mechanism for the further evolutionary history of living beings, assuming there was not been a series of intelligent, representative \"histors\" of life. Through careful research, Darwin's theory of the Origin of Species proved to be compatible with a single evolutionary process, that of speciation (Darwin, 1886). In other words, Darwin had"
]
}
],
"source": [
"tokens = tokenizer('''Charles Darwin''')['input_ids']\n",
"\n",
"current = tokenizer.decode(tokens)\n",
"print(current, end=\"\")\n",
"\n",
"temperature = 8e-1\n",
"\n",
"for _ in range(128):\n",
"\n",
" tok = torch.tensor(tokens).reshape(1, -1)\n",
" \n",
" logits = model(tok)\n",
"\n",
" nxt = torch.multinomial(torch.softmax(logits[:, -1].float()/temperature, dim=-1).squeeze(), num_samples=1).item()\n",
" \n",
" tokens += [nxt]\n",
"\n",
" print(tokenizer.decode(tokens).replace(current, \"\", 1), end=\"\")\n",
" \n",
" current = tokenizer.decode(tokens)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6a6e1068-b3a8-4019-9e31-5336a337a25a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|