mobiusnet / trainer.py
AbstractPhil's picture
Update trainer.py
3aac63e verified
"""
MobiusNet Trainer with TensorBoard, SafeTensors, and HuggingFace Upload
=======================================================================
"""
import os
import re
import json
import math
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from typing import Tuple, Optional, Dict, Any
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import tqdm
from datetime import datetime
from pathlib import Path
from safetensors.torch import save_file as save_safetensors, load_file as load_safetensors
from huggingface_hub import HfApi, login
# Colab HF login
try:
from google.colab import userdata
token = userdata.get('HF_TOKEN')
os.environ['HF_TOKEN'] = token
login(token=token)
print("Logged in to HuggingFace via Colab")
except:
# Not in Colab or token not set
pass
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Device: {device}")
# Enable TF32 for faster computation on Ampere+ GPUs
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
# ============================================================================
# MÖBIUS LENS
# ============================================================================
class MobiusLens(nn.Module):
def __init__(
self,
dim: int,
layer_idx: int,
total_layers: int,
scale_range: Tuple[float, float] = (1.0, 9.0),
):
super().__init__()
self.dim = dim
self.layer_idx = layer_idx
self.total_layers = total_layers
self.t = layer_idx / max(total_layers - 1, 1)
scale_span = scale_range[1] - scale_range[0]
step = scale_span / max(total_layers, 1)
scale_low = scale_range[0] + self.t * scale_span
scale_high = scale_low + step
self.register_buffer('scales', torch.tensor([scale_low, scale_high]))
self.twist_in_angle = nn.Parameter(torch.tensor(self.t * math.pi))
self.twist_in_proj = nn.Linear(dim, dim, bias=False)
nn.init.orthogonal_(self.twist_in_proj.weight)
self.omega = nn.Parameter(torch.tensor(math.pi))
self.alpha = nn.Parameter(torch.tensor(1.5))
self.phase_l = nn.Parameter(torch.zeros(2))
self.drift_l = nn.Parameter(torch.ones(2))
self.phase_m = nn.Parameter(torch.zeros(2))
self.drift_m = nn.Parameter(torch.zeros(2))
self.phase_r = nn.Parameter(torch.zeros(2))
self.drift_r = nn.Parameter(-torch.ones(2))
self.accum_weights = nn.Parameter(torch.tensor([0.4, 0.2, 0.4]))
self.xor_weight = nn.Parameter(torch.tensor(0.7))
self.gate_norm = nn.LayerNorm(dim)
self.twist_out_angle = nn.Parameter(torch.tensor(-self.t * math.pi))
self.twist_out_proj = nn.Linear(dim, dim, bias=False)
nn.init.orthogonal_(self.twist_out_proj.weight)
def _twist_in(self, x: Tensor) -> Tensor:
cos_t = torch.cos(self.twist_in_angle)
sin_t = torch.sin(self.twist_in_angle)
return x * cos_t + self.twist_in_proj(x) * sin_t
def _center_lens(self, x: Tensor) -> Tensor:
x_norm = torch.tanh(x)
t = x_norm.abs().mean(dim=-1, keepdim=True).unsqueeze(-2)
x_exp = x_norm.unsqueeze(-2)
s = self.scales.view(-1, 1)
def wave(phase, drift):
a = self.alpha.abs() + 0.1
pos = s * self.omega * (x_exp + drift.view(-1, 1) * t) + phase.view(-1, 1)
return torch.exp(-a * torch.sin(pos).pow(2)).prod(dim=-2)
L = wave(self.phase_l, self.drift_l)
M = wave(self.phase_m, self.drift_m)
R = wave(self.phase_r, self.drift_r)
w = torch.softmax(self.accum_weights, dim=0)
xor_w = torch.sigmoid(self.xor_weight)
xor_comp = (L + R - 2 * L * R).abs()
and_comp = L * R
lr = xor_w * xor_comp + (1 - xor_w) * and_comp
gate = w[0] * L + w[1] * M + w[2] * R
gate = gate * (0.5 + 0.5 * lr)
gate = torch.sigmoid(self.gate_norm(gate))
return x * gate
def _twist_out(self, x: Tensor) -> Tensor:
cos_t = torch.cos(self.twist_out_angle)
sin_t = torch.sin(self.twist_out_angle)
return x * cos_t + self.twist_out_proj(x) * sin_t
def forward(self, x: Tensor) -> Tensor:
return self._twist_out(self._center_lens(self._twist_in(x)))
def get_lens_stats(self) -> Dict[str, float]:
"""Return lens parameters for logging."""
return {
'omega': self.omega.item(),
'alpha': self.alpha.item(),
'twist_in_angle': self.twist_in_angle.item(),
'twist_out_angle': self.twist_out_angle.item(),
'xor_weight': torch.sigmoid(self.xor_weight).item(),
'accum_weights_l': torch.softmax(self.accum_weights, dim=0)[0].item(),
'accum_weights_m': torch.softmax(self.accum_weights, dim=0)[1].item(),
'accum_weights_r': torch.softmax(self.accum_weights, dim=0)[2].item(),
}
# ============================================================================
# MÖBIUS CONV BLOCK
# ============================================================================
class MobiusConvBlock(nn.Module):
def __init__(
self,
channels: int,
layer_idx: int,
total_layers: int,
scale_range: Tuple[float, float] = (1.0, 9.0),
reduction: float = 0.5,
):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(channels, channels, 3, padding=1, groups=channels, bias=False),
nn.Conv2d(channels, channels, 1, bias=False),
nn.BatchNorm2d(channels),
)
self.lens = MobiusLens(channels, layer_idx, total_layers, scale_range)
third = channels // 3
which_third = layer_idx % 3
mask = torch.ones(channels)
start = which_third * third
end = start + third + (channels % 3 if which_third == 2 else 0)
mask[start:end] = reduction
self.register_buffer('thirds_mask', mask.view(1, -1, 1, 1))
self.residual_weight = nn.Parameter(torch.tensor(0.9))
def forward(self, x: Tensor) -> Tensor:
identity = x
h = self.conv(x)
B, D, H, W = h.shape
h = h.permute(0, 2, 3, 1)
h = self.lens(h)
h = h.permute(0, 3, 1, 2)
h = h * self.thirds_mask
rw = torch.sigmoid(self.residual_weight)
return rw * identity + (1 - rw) * h
def get_residual_weight(self) -> float:
return torch.sigmoid(self.residual_weight).item()
# ============================================================================
# MÖBIUS NET
# ============================================================================
class MobiusNet(nn.Module):
def __init__(
self,
in_chans: int = 3,
num_classes: int = 200,
channels: Tuple[int, ...] = (64, 128, 256, 512),
depths: Tuple[int, ...] = (2, 2, 2, 2),
scale_range: Tuple[float, float] = (0.5, 2.5),
use_integrator: bool = True,
):
super().__init__()
num_stages = len(depths)
total_layers = sum(depths)
self.total_layers = total_layers
self.scale_range = scale_range
self.channels = tuple(channels)
self.depths = tuple(depths)
self.num_stages = num_stages
self.use_integrator = use_integrator
self.num_classes = num_classes
self.in_chans = in_chans
channels = list(channels)
while len(channels) < num_stages:
channels.append(channels[-1])
self.stem = nn.Sequential(
nn.Conv2d(in_chans, channels[0], 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(channels[0]),
)
layer_idx = 0
self.stages = nn.ModuleList()
self.downsamples = nn.ModuleList()
for stage_idx in range(num_stages):
ch = channels[stage_idx]
stage = nn.ModuleList()
for _ in range(depths[stage_idx]):
stage.append(MobiusConvBlock(ch, layer_idx, total_layers, scale_range))
layer_idx += 1
self.stages.append(stage)
if stage_idx < num_stages - 1:
ch_next = channels[stage_idx + 1]
self.downsamples.append(nn.Sequential(
nn.Conv2d(ch, ch_next, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ch_next),
))
final_ch = channels[num_stages - 1]
if use_integrator:
self.integrator = nn.Sequential(
nn.Conv2d(final_ch, final_ch, 3, padding=1, bias=False),
nn.BatchNorm2d(final_ch),
nn.GELU(),
)
else:
self.integrator = nn.Identity()
self.pool = nn.AdaptiveAvgPool2d(1)
self.head = nn.Linear(final_ch, num_classes)
def forward(self, x: Tensor) -> Tensor:
x = self.stem(x)
for i, stage in enumerate(self.stages):
for block in stage:
x = block(x)
if i < len(self.downsamples):
x = self.downsamples[i](x)
x = self.integrator(x)
return self.head(self.pool(x).flatten(1))
def get_config(self) -> Dict[str, Any]:
"""Return model configuration for saving."""
return {
'in_chans': self.in_chans,
'num_classes': self.num_classes,
'channels': self.channels,
'depths': self.depths,
'scale_range': self.scale_range,
'use_integrator': self.use_integrator,
'total_layers': self.total_layers,
'num_stages': self.num_stages,
}
def get_all_lens_stats(self) -> Dict[str, Dict[str, float]]:
"""Return stats from all lenses for logging."""
stats = {}
layer_idx = 0
for stage_idx, stage in enumerate(self.stages):
for block_idx, block in enumerate(stage):
key = f"stage{stage_idx}_block{block_idx}"
stats[key] = block.lens.get_lens_stats()
stats[key]['residual_weight'] = block.get_residual_weight()
layer_idx += 1
return stats
# ============================================================================
# TINY IMAGENET DATASET
# ============================================================================
def get_tiny_imagenet_loaders(data_dir='./data/tiny-imagenet-200', batch_size=128):
train_dir = os.path.join(data_dir, 'train')
val_dir = os.path.join(data_dir, 'val')
val_images_dir = os.path.join(val_dir, 'images')
if os.path.exists(val_images_dir):
print("Reorganizing validation folder...")
reorganize_val_folder(val_dir)
train_transform = transforms.Compose([
transforms.RandomCrop(64, padding=8),
transforms.RandomHorizontalFlip(),
transforms.AutoAugment(transforms.AutoAugmentPolicy.IMAGENET),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
val_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
train_dataset = datasets.ImageFolder(train_dir, transform=train_transform)
val_dataset = datasets.ImageFolder(val_dir, transform=val_transform)
train_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True,
num_workers=8, pin_memory=True, persistent_workers=True
)
val_loader = DataLoader(
val_dataset, batch_size=256, shuffle=False,
num_workers=4, pin_memory=True, persistent_workers=True
)
return train_loader, val_loader
def reorganize_val_folder(val_dir):
"""Reorganize Tiny ImageNet val folder into class subfolders."""
val_images_dir = os.path.join(val_dir, 'images')
val_annotations = os.path.join(val_dir, 'val_annotations.txt')
if not os.path.exists(val_images_dir):
return
with open(val_annotations, 'r') as f:
for line in f:
parts = line.strip().split('\t')
img_name, class_id = parts[0], parts[1]
class_dir = os.path.join(val_dir, class_id)
os.makedirs(class_dir, exist_ok=True)
src = os.path.join(val_images_dir, img_name)
dst = os.path.join(class_dir, img_name)
if os.path.exists(src):
shutil.move(src, dst)
if os.path.exists(val_images_dir):
shutil.rmtree(val_images_dir)
if os.path.exists(val_annotations):
os.remove(val_annotations)
print("Validation folder reorganized.")
# ============================================================================
# PRESETS
# ============================================================================
PRESETS = {
'mobius_tiny_s': {
'channels': (64, 128, 256),
'depths': (2, 2, 2),
'scale_range': (0.5, 2.5),
},
'mobius_tiny_m': {
'channels': (64, 128, 256, 512, 768),
'depths': (2, 2, 4, 2, 2),
'scale_range': (0.25, 2.75),
},
'mobius_tiny_l': {
'channels': (96, 192, 384, 768),
'depths': (3, 3, 3, 3),
'scale_range': (0.5, 3.5),
},
'mobius_base': {
'channels': (128, 256, 512, 768, 1024),
'depths': (2, 2, 2, 2, 2),
'scale_range': (0.25, 2.75),
},
}
# ============================================================================
# CHECKPOINT MANAGER
# ============================================================================
class CheckpointManager:
def __init__(
self,
base_dir: str,
variant_name: str,
dataset_name: str,
hf_repo: str = "AbstractPhil/mobiusnet",
upload_every_n_epochs: int = 10,
save_every_n_epochs: int = 10,
timestamp: Optional[str] = None,
):
self.timestamp = timestamp or datetime.now().strftime("%Y%m%d_%H%M%S")
self.variant_name = variant_name
self.dataset_name = dataset_name
self.hf_repo = hf_repo
self.upload_every_n_epochs = upload_every_n_epochs
self.save_every_n_epochs = save_every_n_epochs
# Directory structure
self.run_name = f"{variant_name}_{dataset_name}"
self.run_dir = Path(base_dir) / "checkpoints" / self.run_name / self.timestamp
self.checkpoints_dir = self.run_dir / "checkpoints"
self.tensorboard_dir = self.run_dir / "tensorboard"
# Create directories
self.checkpoints_dir.mkdir(parents=True, exist_ok=True)
self.tensorboard_dir.mkdir(parents=True, exist_ok=True)
# TensorBoard writer
self.writer = SummaryWriter(log_dir=str(self.tensorboard_dir))
# HuggingFace API
self.hf_api = HfApi()
self.uploaded_files = set()
# Track best
self.best_acc = 0.0
self.best_epoch = 0
self.best_changed_since_upload = False
print(f"Checkpoint directory: {self.run_dir}")
@staticmethod
def extract_timestamp(checkpoint_path: str) -> Optional[str]:
"""Extract timestamp from checkpoint path."""
# Match YYYYMMDD_HHMMSS pattern
match = re.search(r'(\d{8}_\d{6})', checkpoint_path)
if match:
return match.group(1)
return None
def save_config(self, config: Dict[str, Any], training_config: Dict[str, Any]):
"""Save model and training configuration."""
full_config = {
'model': config,
'training': training_config,
'timestamp': self.timestamp,
'variant_name': self.variant_name,
'dataset_name': self.dataset_name,
}
config_path = self.run_dir / "config.json"
with open(config_path, 'w') as f:
json.dump(full_config, f, indent=2)
return config_path
def save_checkpoint(
self,
model: nn.Module,
optimizer: torch.optim.Optimizer,
scheduler: Any,
epoch: int,
train_acc: float,
val_acc: float,
train_loss: float,
is_best: bool = False,
):
"""Save checkpoint every N epochs, always save best (overwriting)."""
# Unwrap compiled model if necessary
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
# Checkpoint data
checkpoint = {
'epoch': epoch,
'train_acc': train_acc,
'val_acc': val_acc,
'train_loss': train_loss,
'best_acc': self.best_acc,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
}
# Save epoch checkpoint every N epochs
if epoch % self.save_every_n_epochs == 0:
epoch_pt_path = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.pt"
torch.save({**checkpoint, 'model_state_dict': raw_model.state_dict()}, epoch_pt_path)
epoch_st_path = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.safetensors"
save_safetensors(raw_model.state_dict(), str(epoch_st_path))
# Save best model (overwrites previous best)
if is_best:
self.best_acc = val_acc
self.best_epoch = epoch
self.best_changed_since_upload = True
# PyTorch best
best_pt_path = self.checkpoints_dir / "best_model.pt"
torch.save({**checkpoint, 'model_state_dict': raw_model.state_dict()}, best_pt_path)
# SafeTensors best
best_st_path = self.checkpoints_dir / "best_model.safetensors"
save_safetensors(raw_model.state_dict(), str(best_st_path))
# Save accuracy info
acc_path = self.run_dir / "best_accuracy.json"
with open(acc_path, 'w') as f:
json.dump({
'best_acc': val_acc,
'best_epoch': epoch,
'train_acc': train_acc,
'train_loss': train_loss,
}, f, indent=2)
def save_final(self, model: nn.Module, final_acc: float, final_epoch: int):
"""Save final model."""
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
# SafeTensors final
final_st_path = self.checkpoints_dir / "final_model.safetensors"
save_safetensors(raw_model.state_dict(), str(final_st_path))
# PyTorch final
final_pt_path = self.checkpoints_dir / "final_model.pt"
torch.save({
'model_state_dict': raw_model.state_dict(),
'final_acc': final_acc,
'final_epoch': final_epoch,
'best_acc': self.best_acc,
'best_epoch': self.best_epoch,
}, final_pt_path)
# Final accuracy info
acc_path = self.run_dir / "final_accuracy.json"
with open(acc_path, 'w') as f:
json.dump({
'final_acc': final_acc,
'final_epoch': final_epoch,
'best_acc': self.best_acc,
'best_epoch': self.best_epoch,
}, f, indent=2)
return final_st_path, final_pt_path
def log_scalars(self, epoch: int, scalars: Dict[str, float], prefix: str = ""):
"""Log scalars to TensorBoard."""
for name, value in scalars.items():
tag = f"{prefix}/{name}" if prefix else name
self.writer.add_scalar(tag, value, epoch)
def log_lens_stats(self, epoch: int, model: nn.Module):
"""Log lens statistics to TensorBoard."""
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
stats = raw_model.get_all_lens_stats()
for block_name, block_stats in stats.items():
for stat_name, value in block_stats.items():
self.writer.add_scalar(f"lens/{block_name}/{stat_name}", value, epoch)
def log_histograms(self, epoch: int, model: nn.Module):
"""Log weight histograms to TensorBoard."""
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
for name, param in raw_model.named_parameters():
if param.requires_grad:
self.writer.add_histogram(f"weights/{name}", param.data, epoch)
if param.grad is not None:
self.writer.add_histogram(f"gradients/{name}", param.grad, epoch)
def upload_to_hf(self, epoch: int, force: bool = False):
"""Upload checkpoint every N epochs. Best uploads only on upload epochs if changed."""
if not force and epoch % self.upload_every_n_epochs != 0:
return
try:
hf_base_path = f"checkpoints/{self.run_name}/{self.timestamp}"
files_to_upload = []
# Always upload config
config_path = self.run_dir / "config.json"
if config_path.exists():
files_to_upload.append(config_path)
# Upload checkpoint if saved this epoch
if epoch % self.save_every_n_epochs == 0:
ckpt_st = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.safetensors"
ckpt_pt = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.pt"
if ckpt_st.exists():
files_to_upload.append(ckpt_st)
if ckpt_pt.exists():
files_to_upload.append(ckpt_pt)
# Upload best if it changed since last upload
if self.best_changed_since_upload:
best_files = [
self.checkpoints_dir / "best_model.safetensors",
self.checkpoints_dir / "best_model.pt",
self.run_dir / "best_accuracy.json",
]
for f in best_files:
if f.exists():
files_to_upload.append(f)
self.best_changed_since_upload = False
# Upload files
for local_path in files_to_upload:
rel_path = local_path.relative_to(self.run_dir)
hf_path = f"{hf_base_path}/{rel_path}"
try:
self.hf_api.upload_file(
path_or_fileobj=str(local_path),
path_in_repo=hf_path,
repo_id=self.hf_repo,
repo_type="model",
)
print(f"Uploaded: {hf_path}")
except Exception as e:
print(f"Failed to upload {rel_path}: {e}")
except Exception as e:
print(f"HuggingFace upload error: {e}")
def close(self):
"""Close TensorBoard writer."""
self.writer.close()
@staticmethod
def load_checkpoint(
checkpoint_path: str,
model: nn.Module,
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[Any] = None,
hf_repo: str = "AbstractPhil/mobiusnet",
device: torch.device = torch.device('cpu'),
) -> Dict[str, Any]:
"""
Load checkpoint from local path or HuggingFace repo.
Args:
checkpoint_path: Either:
- Local file path to .pt checkpoint
- Local directory containing checkpoints
- HuggingFace path like "checkpoints/variant_dataset/timestamp"
model: Model to load weights into
optimizer: Optional optimizer to restore state
scheduler: Optional scheduler to restore state
hf_repo: HuggingFace repo ID
device: Device to load tensors to
Returns:
Dict with checkpoint info (epoch, best_acc, etc.)
"""
from huggingface_hub import hf_hub_download, list_repo_files
checkpoint_file = None
# Check if it's a local file
if os.path.isfile(checkpoint_path):
checkpoint_file = checkpoint_path
# Check if it's a local directory
elif os.path.isdir(checkpoint_path):
# Look for best_model.pt or latest checkpoint
best_path = os.path.join(checkpoint_path, "checkpoints", "best_model.pt")
if os.path.exists(best_path):
checkpoint_file = best_path
else:
# Find latest epoch checkpoint
ckpt_dir = os.path.join(checkpoint_path, "checkpoints")
if os.path.isdir(ckpt_dir):
pt_files = sorted([f for f in os.listdir(ckpt_dir) if f.startswith("checkpoint_epoch_") and f.endswith(".pt")])
if pt_files:
checkpoint_file = os.path.join(ckpt_dir, pt_files[-1])
# Try HuggingFace download
if checkpoint_file is None:
print(f"Attempting to download from HuggingFace: {hf_repo}/{checkpoint_path}")
try:
# If checkpoint_path is a directory path in the repo
if not checkpoint_path.endswith(".pt"):
# Try to download best_model.pt
try:
checkpoint_file = hf_hub_download(
repo_id=hf_repo,
filename=f"{checkpoint_path}/checkpoints/best_model.pt",
repo_type="model",
)
print(f"Downloaded best_model.pt from {hf_repo}")
except:
# List files and find latest checkpoint
files = list_repo_files(repo_id=hf_repo, repo_type="model")
ckpt_files = sorted([f for f in files if checkpoint_path in f and f.endswith(".pt") and "checkpoint_epoch_" in f])
if ckpt_files:
checkpoint_file = hf_hub_download(
repo_id=hf_repo,
filename=ckpt_files[-1],
repo_type="model",
)
print(f"Downloaded {ckpt_files[-1]} from {hf_repo}")
else:
# Direct file path
checkpoint_file = hf_hub_download(
repo_id=hf_repo,
filename=checkpoint_path,
repo_type="model",
)
print(f"Downloaded {checkpoint_path} from {hf_repo}")
except Exception as e:
raise FileNotFoundError(f"Could not find or download checkpoint: {checkpoint_path}. Error: {e}")
if checkpoint_file is None:
raise FileNotFoundError(f"Could not find checkpoint: {checkpoint_path}")
print(f"Loading checkpoint from: {checkpoint_file}")
checkpoint = torch.load(checkpoint_file, map_location=device, weights_only=False)
# Load model weights
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
raw_model.load_state_dict(checkpoint['model_state_dict'])
print(f"Loaded model weights")
# Load optimizer state
if optimizer is not None and 'optimizer_state_dict' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print(f"Loaded optimizer state")
# Load scheduler state
if scheduler is not None and 'scheduler_state_dict' in checkpoint:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
print(f"Loaded scheduler state")
info = {
'epoch': checkpoint.get('epoch', 0),
'best_acc': checkpoint.get('best_acc', 0.0),
'train_acc': checkpoint.get('train_acc', 0.0),
'val_acc': checkpoint.get('val_acc', 0.0),
'train_loss': checkpoint.get('train_loss', 0.0),
}
print(f"Resuming from epoch {info['epoch']} (best_acc: {info['best_acc']:.4f})")
return info
# ============================================================================
# TRAINING
# ============================================================================
def train_tiny_imagenet(
preset: str = 'mobius_tiny_m',
epochs: int = 100,
lr: float = 1e-3,
batch_size: int = 128,
use_integrator: bool = True,
data_dir: str = './data/tiny-imagenet-200',
output_dir: str = './outputs',
hf_repo: str = "AbstractPhil/mobiusnet",
save_every_n_epochs: int = 10,
upload_every_n_epochs: int = 10,
log_histograms_every: int = 10,
use_compile: bool = True,
continue_from: Optional[str] = None,
):
"""
Train MobiusNet on Tiny ImageNet.
Args:
preset: Model preset name
epochs: Total epochs to train
lr: Learning rate
batch_size: Batch size
use_integrator: Whether to use integrator layer
data_dir: Path to Tiny ImageNet data
output_dir: Output directory for checkpoints
hf_repo: HuggingFace repo for uploads/downloads
save_every_n_epochs: Save checkpoint every N epochs
upload_every_n_epochs: Upload to HF every N epochs
log_histograms_every: Log weight histograms every N epochs
use_compile: Whether to use torch.compile
continue_from: Resume from checkpoint. Can be:
- Local .pt file path
- Local checkpoint directory
- HuggingFace path (e.g., "checkpoints/mobius_base_tiny_imagenet/20240101_120000")
"""
config = PRESETS[preset]
dataset_name = "tiny_imagenet"
print("=" * 70)
print(f"MÖBIUS NET - {preset.upper()} - TINY IMAGENET")
print("=" * 70)
print(f"Device: {device}")
print(f"Channels: {config['channels']}")
print(f"Depths: {config['depths']}")
print(f"Scale range: {config['scale_range']}")
print(f"Integrator: {use_integrator}")
if continue_from:
print(f"Continuing from: {continue_from}")
print()
# Extract timestamp from checkpoint path if continuing
resume_timestamp = None
if continue_from:
resume_timestamp = CheckpointManager.extract_timestamp(continue_from)
if resume_timestamp:
print(f"Using original timestamp: {resume_timestamp}")
# Initialize checkpoint manager
ckpt_manager = CheckpointManager(
base_dir=output_dir,
variant_name=preset,
dataset_name=dataset_name,
hf_repo=hf_repo,
upload_every_n_epochs=upload_every_n_epochs,
save_every_n_epochs=save_every_n_epochs,
timestamp=resume_timestamp,
)
# Data
train_loader, val_loader = get_tiny_imagenet_loaders(data_dir, batch_size)
# Model
model = MobiusNet(
in_chans=3,
num_classes=200,
use_integrator=use_integrator,
**config
).to(device)
total_params = sum(p.numel() for p in model.parameters())
print(f"Total params: {total_params:,}")
print()
# Save config
training_config = {
'epochs': epochs,
'lr': lr,
'batch_size': batch_size,
'optimizer': 'AdamW',
'weight_decay': 0.05,
'scheduler': 'CosineAnnealingLR',
'total_params': total_params,
}
ckpt_manager.save_config(model.get_config(), training_config)
# Compile model
if use_compile:
model = torch.compile(model, mode='reduce-overhead')
# Optimizer and scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=0.05)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs)
# Load checkpoint if continuing
start_epoch = 1
best_acc = 0.0
if continue_from:
ckpt_info = CheckpointManager.load_checkpoint(
checkpoint_path=continue_from,
model=model,
optimizer=optimizer,
scheduler=scheduler,
hf_repo=hf_repo,
device=device,
)
start_epoch = ckpt_info['epoch'] + 1
best_acc = ckpt_info['best_acc']
ckpt_manager.best_acc = best_acc
ckpt_manager.best_epoch = ckpt_info['epoch']
print(f"Resuming training from epoch {start_epoch}")
for epoch in range(start_epoch, epochs + 1):
# Training
model.train()
train_loss, train_correct, train_total = 0, 0, 0
pbar = tqdm(train_loader, desc=f"Epoch {epoch:3d}")
for x, y in pbar:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
logits = model(x)
loss = F.cross_entropy(logits, y)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
train_loss += loss.item() * x.size(0)
train_correct += (logits.argmax(1) == y).sum().item()
train_total += x.size(0)
pbar.set_postfix(loss=f"{loss.item():.4f}")
scheduler.step()
# Validation
model.eval()
val_correct, val_total = 0, 0
with torch.no_grad():
for x, y in val_loader:
x, y = x.to(device), y.to(device)
logits = model(x)
val_correct += (logits.argmax(1) == y).sum().item()
val_total += x.size(0)
# Metrics
train_acc = train_correct / train_total
val_acc = val_correct / val_total
avg_loss = train_loss / train_total
current_lr = scheduler.get_last_lr()[0]
is_best = val_acc > best_acc
if is_best:
best_acc = val_acc
marker = " ★" if is_best else ""
print(f"Epoch {epoch:3d} | Loss: {avg_loss:.4f} | "
f"Train: {train_acc:.4f} | Val: {val_acc:.4f} | Best: {best_acc:.4f}{marker}")
# TensorBoard logging
ckpt_manager.log_scalars(epoch, {
'loss': avg_loss,
'train_acc': train_acc,
'val_acc': val_acc,
'best_acc': best_acc,
'learning_rate': current_lr,
}, prefix="train")
# Log lens stats
ckpt_manager.log_lens_stats(epoch, model)
# Log histograms periodically
if epoch % log_histograms_every == 0:
ckpt_manager.log_histograms(epoch, model)
# Save checkpoint
ckpt_manager.save_checkpoint(
model=model,
optimizer=optimizer,
scheduler=scheduler,
epoch=epoch,
train_acc=train_acc,
val_acc=val_acc,
train_loss=avg_loss,
is_best=is_best,
)
# Upload to HuggingFace (handles both checkpoint and best)
ckpt_manager.upload_to_hf(epoch)
# Save final model
ckpt_manager.save_final(model, val_acc, epochs)
# Final upload
ckpt_manager.upload_to_hf(epochs, force=True)
ckpt_manager.close()
print()
print("=" * 70)
print("FINAL RESULTS")
print("=" * 70)
print(f"Preset: {preset}")
print(f"Best accuracy: {best_acc:.4f}")
print(f"Total params: {total_params:,}")
print(f"Checkpoints: {ckpt_manager.run_dir}")
print("=" * 70)
return model, best_acc
# ============================================================================
# RUN
# ============================================================================
if __name__ == '__main__':
model, best_acc = train_tiny_imagenet(
preset='mobius_base',
epochs=200,
lr=3e-4,
batch_size=128,
use_integrator=True,
data_dir='./data/tiny-imagenet-200',
output_dir='./outputs',
hf_repo='AbstractPhil/mobiusnet',
save_every_n_epochs=10,
upload_every_n_epochs=10,
log_histograms_every=10,
use_compile=True,
continue_from='/content/outputs/checkpoints/mobius_base_tiny_imagenet/20260110_132436/checkpoints/best_model.pt', # Set to path or HF checkpoint to resume
# Examples:
# continue_from="./outputs/checkpoints/mobius_base_tiny_imagenet/20240101_120000"
# continue_from="./outputs/checkpoints/mobius_base_tiny_imagenet/20240101_120000/checkpoints/best_model.pt"
# continue_from="checkpoints/mobius_base_tiny_imagenet/20240101_120000" # downloads from HF
)