penta-vit-experiments / legacy /vit_zana_v3.py
AbstractPhil's picture
Rename vit_zana_v3.py to legacy/vit_zana_v3.py
45f552c verified
"""
Baseline Vision Transformer with Frozen Pentachora Embeddings
Clean architecture with geometric semantic anchors
Assumes PentachoronStabilizer is loaded externally
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from einops import rearrange
import math
from typing import Optional, Tuple, Dict, Any
class PentachoraEmbedding(nn.Module):
"""
A single frozen pentachora embedding (5 vertices in geometric space).
Accepts pre-computed vertices only. No random initialization.
"""
def __init__(self, vertices: torch.Tensor):
super().__init__()
#assert vertices.shape == (5, 128), f"Expected shape (5, 128), got {vertices.shape}"
self.embed_dim = vertices.shape[-1]
# Store provided vertices as frozen buffer
self.register_buffer('vertices', vertices)
self.vertices.requires_grad = False
# Precompute normalized versions and centroid
with torch.no_grad():
self.register_buffer('vertices_norm', F.normalize(self.vertices, dim=-1))
self.register_buffer('centroid', self.vertices.mean(dim=0))
self.register_buffer('centroid_norm', F.normalize(self.centroid, dim=-1))
def get_vertices(self) -> torch.Tensor:
"""Get all 5 vertices."""
return self.vertices
def get_centroid(self) -> torch.Tensor:
"""Get the centroid of the pentachora."""
return self.centroid
def compute_rose_score(self, features: torch.Tensor) -> torch.Tensor:
"""
Compute Rose similarity score with this pentachora.
Uses external PentachoronStabilizer.rose_score_magnitude
"""
# Prepare vertices for rose scoring
verts = self.vertices.unsqueeze(0) # [1, 5, D]
if features.dim() == 1:
features = features.unsqueeze(0)
# Expand vertices to batch size if needed
B = features.shape[0]
if B > 1:
verts = verts.expand(B, -1, -1)
return PentachoronStabilizer.rose_score_magnitude(features, verts)
def compute_similarity(self, features: torch.Tensor, mode: str = 'centroid') -> torch.Tensor:
"""
Compute similarity between features and this pentachora.
Args:
features: [batch, dim] or [batch, seq, dim]
mode: 'centroid', 'max' (max over vertices), or 'rose' (Rose score)
Returns:
similarities: [batch] or [batch, seq]
"""
if mode == 'rose':
return self.compute_rose_score(features)
features_norm = F.normalize(features, dim=-1)
if mode == 'centroid':
# Dot product with centroid
return torch.matmul(features_norm, self.centroid_norm)
else: # mode == 'max'
# Max similarity across vertices
sims = torch.matmul(features_norm, self.vertices_norm.T)
return sims.max(dim=-1)[0]
class TransformerBlock(nn.Module):
"""Standard transformer block with multi-head attention and MLP."""
def __init__(
self,
dim: int,
num_heads: int = 8,
mlp_ratio: float = 4.0,
dropout: float = 0.0,
attn_dropout: float = 0.0
):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn = nn.MultiheadAttention(
dim,
num_heads,
dropout=attn_dropout,
batch_first=True
)
self.norm2 = nn.LayerNorm(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = nn.Sequential(
nn.Linear(dim, mlp_hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(mlp_hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Self-attention
x_norm = self.norm1(x)
attn_out, _ = self.attn(x_norm, x_norm, x_norm)
x = x + attn_out
# MLP
x = x + self.mlp(self.norm2(x))
return x
class BaselineViT(nn.Module):
"""
Clean baseline Vision Transformer with frozen pentachora embeddings.
"""
def __init__(
self,
pentachora_list: list, # List of torch.Tensor, each [5, vocab_dim]
vocab_dim: int = 256,
img_size: int = 32,
patch_size: int = 4,
embed_dim: int = 512,
depth: int = 12,
num_heads: int = 8,
mlp_ratio: float = 4.0,
dropout: float = 0.0,
attn_dropout: float = 0.0,
similarity_mode: str = 'rose' # 'centroid', 'max', or 'rose'
):
super().__init__()
# Validate pentachora list
assert isinstance(pentachora_list, list), f"Expected list, got {type(pentachora_list)}"
assert len(pentachora_list) > 0, "Empty pentachora list"
# Validate each pentachora
for i, penta in enumerate(pentachora_list):
assert isinstance(penta, torch.Tensor), f"Item {i} is not a tensor"
self.num_classes = len(pentachora_list)
self.embed_dim = embed_dim
self.num_patches = (img_size // patch_size) ** 2
self.similarity_mode = similarity_mode
self.pentachora_dim = vocab_dim
# Create individual pentachora embeddings from list
self.class_pentachora = nn.ModuleList([
PentachoraEmbedding(vertices=penta)
for penta in pentachora_list
])
# Patch embedding
self.patch_embed = nn.Conv2d(3, embed_dim, kernel_size=patch_size, stride=patch_size)
# CLS token - learnable
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# Position embeddings
self.pos_embed = nn.Parameter(torch.zeros(1, 1 + self.num_patches, embed_dim))
self.pos_drop = nn.Dropout(dropout)
# Transformer blocks
self.blocks = nn.ModuleList([
TransformerBlock(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
dropout=dropout,
attn_dropout=attn_dropout
)
for i in range(depth)
])
# Final norm
self.norm = nn.LayerNorm(embed_dim)
# Project to pentachora dimension if needed
if self.pentachora_dim != embed_dim:
self.to_pentachora_dim = nn.Linear(embed_dim, self.pentachora_dim)
else:
self.to_pentachora_dim = nn.Identity()
# Temperature for similarity-based classification
self.temperature = nn.Parameter(torch.ones(1) * np.log(1/0.07))
self.register_buffer(
'all_centroids',
torch.stack([penta.centroid for penta in self.class_pentachora])
)
self.register_buffer(
'all_centroids_norm',
F.normalize(self.all_centroids, dim=-1)
)
# Initialize weights
self.init_weights()
def init_weights(self):
"""Initialize model weights."""
nn.init.trunc_normal_(self.cls_token, std=0.02)
nn.init.trunc_normal_(self.pos_embed, std=0.02)
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
# Then get_class_centroids becomes:
def get_class_centroids(self) -> torch.Tensor:
return self.all_centroids_norm
def compute_pentachora_similarities(self, features: torch.Tensor) -> torch.Tensor:
"""
Compute similarities between features and all class pentachora (vectorized).
"""
if self.similarity_mode == 'rose':
# Stack all vertices into single tensor for batch Rose scoring
all_vertices = torch.stack([penta.vertices for penta in self.class_pentachora]) # [100, 5, vocab_dim]
# Expand features for batch computation
features_exp = features.unsqueeze(1).expand(-1, self.num_classes, -1) # [B, 100, vocab_dim]
# Compute Rose scores in parallel
return PentachoronStabilizer.rose_score_magnitude(features_exp.reshape(-1, self.embed_dim), all_vertices.repeat(features.shape[0], 1, 1)).reshape(features.shape[0], -1)
else:
# Stack all centroids
centroids = torch.stack([penta.centroid_norm for penta in self.class_pentachora]) # [100, vocab_dim]
features_norm = F.normalize(features, dim=-1) # [B, vocab_dim]
return torch.matmul(features_norm, centroids.T) # [B, 100]
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
"""Extract features from images."""
B = x.shape[0]
# Patch embedding
x = self.patch_embed(x) # [B, embed_dim, H', W']
x = x.flatten(2).transpose(1, 2) # [B, num_patches, embed_dim]
# Add CLS token
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat([cls_tokens, x], dim=1)
# Add position embeddings
x = x + self.pos_embed
x = self.pos_drop(x)
# Apply transformer blocks
for block in self.blocks:
x = block(x)
# Final norm
x = self.norm(x)
# Return CLS token
return x[:, 0]
def forward(self, x: torch.Tensor, return_features: bool = False) -> Dict[str, torch.Tensor]:
"""
Forward pass.
Returns dict with:
- logits: classification logits
- features: CLS features (if return_features=True)
- similarities: raw similarities to pentachora
"""
features = self.forward_features(x)
output = {}
# Project to pentachora dimension
features_proj = self.to_pentachora_dim(features)
# Compute similarities based on mode
if self.similarity_mode == 'rose':
# Use Rose scoring
similarities = self.compute_pentachora_similarities(features_proj)
else:
# Use centroid or max similarity
features_norm = F.normalize(features_proj, dim=-1)
centroids = self.get_class_centroids()
similarities = torch.matmul(features_norm, centroids.T)
# Scale by temperature
logits = similarities * self.temperature.exp()
output['logits'] = logits
output['similarities'] = similarities
if return_features:
output['features'] = features
return output
# Test - requires external setup
if __name__ == "__main__":
print("BaselineViT requires:")
print(" 1. PentachoronStabilizer loaded externally")
print(" 2. pentachora_batch tensor [num_classes, 5, vocab_dim]")
print("\nNo random initialization. No fallbacks.")