YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

🧠 MarianMT-Text-Translation-AI-Model-"en-de"

A sequence-to-sequence translation model fine-tuned on English–German sentence pairs. This model translates English text into German and is built using the Hugging Face MarianMTModel. It’s suitable for general-purpose translation, language learning, and formal or semi-formal communication across English and German.


✨ Model Highlights

  • πŸ“Œ Base Model: Helsinki-NLP/opus-mt-en-de
  • πŸ“š Fine-tuned on a cleaned and tokenized parallel English-German dataset
  • 🌍 Direction: English β†’ German
  • πŸ”§ Framework: Hugging Face Transformers + PyTorch

🧠 Intended Uses

  • βœ… Translating English content (emails, documentation, support text) into German
  • βœ… Use in educational platforms for learning German
  • βœ… Supporting cross-lingual customer service, product documentation, or semi-formal communications

🚫 Limitations

  • ❌ Not optimized for informal, idiomatic, or slang expressions
  • ❌ Not ideal for legal, medical, or sensitive content translation
  • πŸ“ Sentences longer than 128 tokens are truncated
  • ⚠️ Domain-specific accuracy may vary (e.g., legal, technical)

πŸ‹οΈβ€β™‚οΈ Training Details

Attribute Value
Base Model Helsinki-NLP/opus-mt-en-de
Dataset WMT14 English-German
Task Type Translation
Max Token Length 128
Epochs 3
Batch Size 16
Optimizer AdamW
Loss Function CrossEntropyLoss
Framework PyTorch + Transformers
Hardware CUDA-enabled GPU

πŸ“Š Evaluation Metrics

Metric Score
BLEU Score 30.42

πŸ”Ž Output Details

  • Input: English text string
  • Output: Translated German text string

πŸš€ Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

model_name = "AventIQ-AI/Ai-Translate-Model-Eng-German"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.eval()

def translate(text):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
    outputs = model.generate(**inputs)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Example
print(translate("How are you doing today?"))

πŸ“ Repository Structure

finetuned-model/
β”œβ”€β”€ config.json               βœ… Model architecture & config
β”œβ”€β”€ pytorch_model.bin         βœ… Model weights
β”œβ”€β”€ tokenizer_config.json     βœ… Tokenizer settings
β”œβ”€β”€ tokenizer.json            βœ… Tokenizer vocabulary (JSON format)
β”œβ”€β”€ source.spm                βœ… SentencePiece model for source language
β”œβ”€β”€ target.spm                βœ… SentencePiece model for target language
β”œβ”€β”€ special_tokens_map.json   βœ… Special tokens mapping
β”œβ”€β”€ generation_config.json    βœ… (Optional) Generation defaults
β”œβ”€β”€ README.md                 βœ… Model card

🀝 Contributing

Contributions are welcome! Feel free to open an issue or pull request to improve the model, training scripts, or documentation.

Downloads last month
235
Safetensors
Model size
73.9M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support