YAML Metadata
		Warning:
	empty or missing yaml metadata in repo card
	(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
π§ MarianMT-Text-Translation-AI-Model-"en-de"
A sequence-to-sequence translation model fine-tuned on EnglishβGerman sentence pairs. This model translates English text into German and is built using the Hugging Face MarianMTModel. Itβs suitable for general-purpose translation, language learning, and formal or semi-formal communication across English and German.
β¨ Model Highlights
- π Base Model: Helsinki-NLP/opus-mt-en-de
- π Fine-tuned on a cleaned and tokenized parallel English-German dataset
- π Direction: English β German
- π§ Framework: Hugging Face Transformers + PyTorch
π§ Intended Uses
- β Translating English content (emails, documentation, support text) into German
- β Use in educational platforms for learning German
- β Supporting cross-lingual customer service, product documentation, or semi-formal communications
π« Limitations
- β Not optimized for informal, idiomatic, or slang expressions
- β Not ideal for legal, medical, or sensitive content translation
- π Sentences longer than 128 tokens are truncated
- β οΈ Domain-specific accuracy may vary (e.g., legal, technical)
ποΈββοΈ Training Details
| Attribute | Value | 
|---|---|
| Base Model | Helsinki-NLP/opus-mt-en-de | 
| Dataset | WMT14 English-German | 
| Task Type | Translation | 
| Max Token Length | 128 | 
| Epochs | 3 | 
| Batch Size | 16 | 
| Optimizer | AdamW | 
| Loss Function | CrossEntropyLoss | 
| Framework | PyTorch + Transformers | 
| Hardware | CUDA-enabled GPU | 
π Evaluation Metrics
| Metric | Score | 
|---|---|
| BLEU Score | 30.42 | 
π Output Details
- Input: English text string
- Output: Translated German text string
π Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
model_name = "AventIQ-AI/Ai-Translate-Model-Eng-German"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.eval()
def translate(text):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
    outputs = model.generate(**inputs)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Example
print(translate("How are you doing today?"))
π Repository Structure
finetuned-model/
βββ config.json               β
 Model architecture & config
βββ pytorch_model.bin         β
 Model weights
βββ tokenizer_config.json     β
 Tokenizer settings
βββ tokenizer.json            β
 Tokenizer vocabulary (JSON format)
βββ source.spm                β
 SentencePiece model for source language
βββ target.spm                β
 SentencePiece model for target language
βββ special_tokens_map.json   β
 Special tokens mapping
βββ generation_config.json    β
 (Optional) Generation defaults
βββ README.md                 β
 Model card
π€ Contributing
Contributions are welcome! Feel free to open an issue or pull request to improve the model, training scripts, or documentation.
- Downloads last month
- 235
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	π
			
		Ask for provider support
