training-scripts / train_tool_calling.py
Codyfederer's picture
Upload train_tool_calling.py with huggingface_hub
38d7272 verified
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "torch>=2.0.0",
# "transformers>=4.50.0",
# "datasets>=2.14.0",
# "trl>=0.12.0",
# "peft>=0.7.0",
# "accelerate>=0.25.0",
# "bitsandbytes>=0.41.0",
# "trackio",
# "huggingface_hub",
# ]
# ///
"""
LoRA Fine-tuning Script: Add Tool Calling to Synthia-S1-27b
This script fine-tunes Tesslate/Synthia-S1-27b with LoRA using the
nvidia/Nemotron-Agentic-v1 tool_calling dataset.
Usage:
# With uv (recommended)
uv run train_tool_calling.py
# Or with pip
pip install torch transformers datasets trl peft accelerate bitsandbytes trackio
python train_tool_calling.py
Hardware Requirements:
- Minimum: 1x A100 80GB or 2x A10G 24GB
- Recommended: 1x A100 80GB for fastest training
"""
import os
import json
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, DataCollatorForLanguageModeling
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from trl import SFTTrainer, SFTConfig
import torch
import trackio
from huggingface_hub import hf_hub_download, HfApi, create_repo
# ============================================================================
# CONFIGURATION - Modify these values as needed
# ============================================================================
# Model configuration
BASE_MODEL = "Tesslate/Synthia-S1-27b"
OUTPUT_MODEL = "Synthia-S1-27b-tool-calling" # Will be pushed as Codyfederer/Synthia-S1-27b-tool-calling
# Dataset configuration
DATASET_NAME = "nvidia/Nemotron-Agentic-v1"
DATASET_SPLIT = "tool_calling"
MAX_SAMPLES = None # Set to a number (e.g., 10000) to limit dataset size for testing
# Training hyperparameters
NUM_EPOCHS = 1 # 1 epoch is often sufficient for large datasets
MAX_SEQ_LENGTH = 4096 # Adjust based on your GPU memory
BATCH_SIZE = 1 # Per device batch size
GRADIENT_ACCUMULATION = 16 # Effective batch size = BATCH_SIZE * GRADIENT_ACCUMULATION
LEARNING_RATE = 2e-4
WARMUP_RATIO = 0.03
# LoRA configuration
LORA_R = 64 # LoRA rank - higher = more capacity but more memory
LORA_ALPHA = 128 # LoRA alpha - typically 2x rank
LORA_DROPOUT = 0.05
# Quantization (4-bit for memory efficiency)
USE_4BIT = False # Using BF16 LoRA on H100 for better quality
# Tokenized dataset caching
TOKENIZED_DATASET_REPO = "Codyfederer/synthia-tool-calling-tokenized"
SAVE_TOKENIZED = True # Save tokenized dataset to Hub for reuse
TOKENIZED_DATASET_PRIVATE = True # Make tokenized dataset private
LOAD_TOKENIZED_IF_EXISTS = True # Skip tokenization if already exists on Hub
# Hub configuration
PUSH_TO_HUB = True
HUB_PRIVATE = False # Set to True for private model
# ============================================================================
# TRAINING SCRIPT
# ============================================================================
def tokenize_conversation(example, tokenizer, max_length):
"""
Tokenize a conversation using the model's chat template.
Returns input_ids, attention_mask, and labels for causal LM training.
"""
messages = example["messages"]
# Apply chat template to get the full text
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=False
)
# Tokenize the text
tokenized = tokenizer(
text,
truncation=True,
max_length=max_length,
padding=False, # We'll pad later in the data collator
return_tensors=None, # Return lists, not tensors
)
# For causal LM, labels are the same as input_ids (shifted internally by the model)
tokenized["labels"] = tokenized["input_ids"].copy()
return tokenized
def main():
print("=" * 60)
print("Tool Calling Fine-tuning for Synthia-S1-27b")
print("=" * 60)
# Initialize Trackio for monitoring
trackio.init(project="synthia-tool-calling")
# Get HF username for hub_model_id
from huggingface_hub import whoami
try:
username = whoami()["name"]
hub_model_id = f"{username}/{OUTPUT_MODEL}"
print(f"Will push to: {hub_model_id}")
except Exception as e:
print(f"Warning: Not logged in to HF Hub ({e})")
print("Model will be saved locally only. Run 'huggingface-cli login' to enable Hub push.")
hub_model_id = OUTPUT_MODEL
global PUSH_TO_HUB
PUSH_TO_HUB = False
# -------------------------------------------------------------------------
# Load Tokenizer FIRST (needed for tokenization)
# -------------------------------------------------------------------------
print(f"\nLoading tokenizer from {BASE_MODEL}...")
tokenizer = AutoTokenizer.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
padding_side="right",
)
# Ensure pad token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
print(f"Vocab size: {len(tokenizer):,}")
# -------------------------------------------------------------------------
# Try to Load Pre-tokenized Dataset from Hub
# -------------------------------------------------------------------------
train_dataset = None
eval_dataset = None
if LOAD_TOKENIZED_IF_EXISTS:
print(f"\nChecking for pre-tokenized dataset: {TOKENIZED_DATASET_REPO}")
try:
from datasets import load_dataset as hf_load_dataset
# Try to load the tokenized dataset
tokenized_ds = hf_load_dataset(TOKENIZED_DATASET_REPO)
# Check if it has the required columns (input_ids, attention_mask)
if "train" in tokenized_ds and "input_ids" in tokenized_ds["train"].column_names:
print(" Found pre-tokenized dataset with input_ids!")
train_dataset = tokenized_ds["train"]
eval_dataset = tokenized_ds.get("test", tokenized_ds.get("validation"))
print(f" Train samples: {len(train_dataset):,}")
if eval_dataset:
print(f" Eval samples: {len(eval_dataset):,}")
else:
print(" Dataset exists but is not tokenized (no input_ids column)")
print(" Will re-tokenize and save...")
except Exception as e:
print(f" Could not load pre-tokenized dataset: {e}")
print(" Will tokenize from scratch...")
# -------------------------------------------------------------------------
# Load and Tokenize Dataset (if not loaded from Hub)
# -------------------------------------------------------------------------
if train_dataset is None:
print(f"\nLoading dataset: {DATASET_NAME} ({DATASET_SPLIT} split)...")
# Download the JSONL file directly from the dataset repo
jsonl_file = f"data/{DATASET_SPLIT}.jsonl"
print(f"Downloading {jsonl_file}...")
local_path = hf_hub_download(
repo_id=DATASET_NAME,
filename=jsonl_file,
repo_type="dataset"
)
print(f"Downloaded to: {local_path}")
# Load JSONL manually to handle schema inconsistencies
print("Loading and processing JSONL file...")
processed_examples = []
skipped = 0
with open(local_path, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f):
if line_num % 50000 == 0:
print(f" Processed {line_num:,} lines...")
try:
example = json.loads(line.strip())
messages = example.get("messages", [])
# Convert messages to consistent format
formatted_messages = []
for msg in messages:
role = msg.get("role", "user")
content = msg.get("content", "")
# Handle content that might be a list or complex object
if isinstance(content, list):
# For tool calls, content is often a list of dicts
parts = []
for item in content:
if isinstance(item, dict):
if "text" in item:
parts.append(item["text"])
else:
parts.append(json.dumps(item))
else:
parts.append(str(item))
content = "\n".join(parts) if parts else ""
elif isinstance(content, dict):
content = json.dumps(content)
elif content is None:
content = ""
else:
content = str(content)
formatted_messages.append({
"role": role,
"content": content
})
# Ensure proper role alternation for chat template
# Merge consecutive messages with same role, handle tool messages
if formatted_messages:
merged_messages = []
for msg in formatted_messages:
role = msg["role"]
content = msg["content"]
# Map tool role to assistant (tool responses are from assistant's perspective)
if role == "tool":
role = "user" # Tool output is provided to the model like user input
content = f"[Tool Result]\n{content}"
# If same role as previous, merge content
if merged_messages and merged_messages[-1]["role"] == role:
merged_messages[-1]["content"] += f"\n\n{content}"
else:
merged_messages.append({"role": role, "content": content})
# Ensure conversation starts with user and alternates
if merged_messages and merged_messages[0]["role"] != "user":
# Prepend a placeholder user message if starts with assistant
merged_messages.insert(0, {"role": "user", "content": "[Start]"})
processed_examples.append({"messages": merged_messages})
except Exception as e:
skipped += 1
if skipped < 5:
print(f" Warning: Skipped line {line_num}: {e}")
print(f"Loaded {len(processed_examples):,} examples (skipped {skipped})")
# Create dataset from processed examples
dataset = Dataset.from_list(processed_examples)
print(f"Dataset size: {len(dataset):,} examples")
if MAX_SAMPLES and len(dataset) > MAX_SAMPLES:
dataset = dataset.shuffle(seed=42).select(range(MAX_SAMPLES))
print(f"Limited to {MAX_SAMPLES:,} samples for training")
# Create train/eval split
split_dataset = dataset.train_test_split(test_size=0.02, seed=42)
train_dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
print(f"Train samples: {len(train_dataset):,}")
print(f"Eval samples: {len(eval_dataset):,}")
# -------------------------------------------------------------------------
# TOKENIZE the dataset (this is the key step!)
# -------------------------------------------------------------------------
print(f"\nTokenizing dataset with max_length={MAX_SEQ_LENGTH}...")
print("This may take a while for large datasets...")
# Tokenize train dataset
train_dataset = train_dataset.map(
lambda x: tokenize_conversation(x, tokenizer, MAX_SEQ_LENGTH),
remove_columns=["messages"], # Remove text, keep only tokens
num_proc=4, # Parallelize
desc="Tokenizing train",
)
# Tokenize eval dataset
eval_dataset = eval_dataset.map(
lambda x: tokenize_conversation(x, tokenizer, MAX_SEQ_LENGTH),
remove_columns=["messages"],
num_proc=4,
desc="Tokenizing eval",
)
print(f"Tokenization complete!")
print(f"Train dataset columns: {train_dataset.column_names}")
print(f"Sample input_ids length: {len(train_dataset[0]['input_ids'])}")
# Save TOKENIZED dataset to Hub for reuse
if SAVE_TOKENIZED:
print(f"\nSaving TOKENIZED dataset to Hub: {TOKENIZED_DATASET_REPO}")
try:
# Create the repo if it doesn't exist (private!)
api = HfApi()
try:
create_repo(
TOKENIZED_DATASET_REPO,
repo_type="dataset",
private=TOKENIZED_DATASET_PRIVATE,
exist_ok=True
)
print(f" Created/verified repo (private={TOKENIZED_DATASET_PRIVATE})")
# Try to update visibility if repo already exists
if TOKENIZED_DATASET_PRIVATE:
try:
api.update_repo_visibility(
TOKENIZED_DATASET_REPO,
repo_type="dataset",
private=True
)
print(f" Ensured repo is private")
except Exception:
pass # Ignore if already private or no permission
except Exception as e:
print(f" Repo creation note: {e}")
# Reset format to ensure data is serializable (not torch tensors)
train_dataset.reset_format()
eval_dataset.reset_format()
# Verify the data looks correct before pushing
print(f" Verifying tokenized data...")
print(f" Train columns: {train_dataset.column_names}")
print(f" Sample input_ids type: {type(train_dataset[0]['input_ids'])}")
print(f" Sample input_ids length: {len(train_dataset[0]['input_ids'])}")
print(f" First 10 tokens: {train_dataset[0]['input_ids'][:10]}")
# Push tokenized datasets to Hub (private is set at repo creation)
print(f" Pushing train split ({len(train_dataset):,} examples)...")
train_dataset.push_to_hub(
TOKENIZED_DATASET_REPO,
split="train",
)
print(f" Pushing test split ({len(eval_dataset):,} examples)...")
eval_dataset.push_to_hub(
TOKENIZED_DATASET_REPO,
split="test",
)
print(f" SUCCESS! Saved TOKENIZED data to: https://huggingface.co/datasets/{TOKENIZED_DATASET_REPO}")
print(f" Columns saved: {train_dataset.column_names}")
print(f" Dataset is private: {TOKENIZED_DATASET_PRIVATE}")
# Verify the upload by trying to load it back
print(f" Verifying upload...")
try:
from datasets import load_dataset as verify_load
verify_ds = verify_load(TOKENIZED_DATASET_REPO, split="train", streaming=True)
sample = next(iter(verify_ds))
if "input_ids" in sample:
print(f" VERIFIED: Dataset contains input_ids with {len(sample['input_ids'])} tokens")
else:
print(f" WARNING: Dataset uploaded but input_ids not found in columns: {list(sample.keys())}")
except Exception as ve:
print(f" Could not verify upload: {ve}")
except Exception as e:
print(f" ERROR saving to Hub: {e}")
import traceback
traceback.print_exc()
print(" Continuing with training anyway...")
# -------------------------------------------------------------------------
# Load Model with Quantization
# -------------------------------------------------------------------------
print(f"\nLoading model: {BASE_MODEL}...")
if USE_4BIT:
print("Using 4-bit quantization (QLoRA)")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
else:
bnb_config = None
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="sdpa", # Use PyTorch's Scaled Dot Product Attention
)
if USE_4BIT:
model = prepare_model_for_kbit_training(model)
print(f"Model loaded. Parameters: {model.num_parameters():,}")
# -------------------------------------------------------------------------
# Configure LoRA
# -------------------------------------------------------------------------
print(f"\nConfiguring LoRA (r={LORA_R}, alpha={LORA_ALPHA})...")
# Target modules for Gemma 3 architecture
target_modules = [
"q_proj", "k_proj", "v_proj", "o_proj", # Attention
"gate_proj", "up_proj", "down_proj", # MLP
]
lora_config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
lora_dropout=LORA_DROPOUT,
target_modules=target_modules,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# -------------------------------------------------------------------------
# Training Configuration
# -------------------------------------------------------------------------
print("\nConfiguring training...")
training_args = SFTConfig(
output_dir=f"./{OUTPUT_MODEL}",
# Training params
num_train_epochs=NUM_EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION,
# Optimizer
learning_rate=LEARNING_RATE,
lr_scheduler_type="cosine",
warmup_ratio=WARMUP_RATIO,
weight_decay=0.01,
optim="adamw_torch",
# Memory optimization
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": False},
max_grad_norm=1.0,
# Sequence length
max_length=MAX_SEQ_LENGTH,
packing=False, # Disable packing for tool calling (preserve conversation structure)
# Evaluation
eval_strategy="steps",
eval_steps=500,
# Saving
save_strategy="steps",
save_steps=500,
save_total_limit=3,
# Hub
push_to_hub=PUSH_TO_HUB,
hub_model_id=hub_model_id if PUSH_TO_HUB else None,
hub_strategy="checkpoint",
hub_private_repo=HUB_PRIVATE,
# Logging
logging_steps=10,
report_to="trackio",
run_name=f"lora-r{LORA_R}-lr{LEARNING_RATE}",
# Performance
bf16=True,
dataloader_num_workers=4,
dataloader_pin_memory=True,
# Reproducibility
seed=42,
)
# -------------------------------------------------------------------------
# Initialize Trainer
# -------------------------------------------------------------------------
print("\nInitializing trainer...")
# Create data collator for padding pre-tokenized data
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False, # Causal LM, not masked LM
)
# Check if dataset is pre-tokenized
is_pretokenized = "input_ids" in train_dataset.column_names
print(f"Dataset is pre-tokenized: {is_pretokenized}")
print(f"Dataset columns: {train_dataset.column_names}")
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=tokenizer,
data_collator=data_collator,
)
# -------------------------------------------------------------------------
# Train!
# -------------------------------------------------------------------------
print("\n" + "=" * 60)
print("Starting training...")
print("=" * 60 + "\n")
trainer.train()
# -------------------------------------------------------------------------
# Save Final Model
# -------------------------------------------------------------------------
print("\nSaving final model...")
trainer.save_model()
if PUSH_TO_HUB:
print(f"Pushing to Hub: {hub_model_id}")
trainer.push_to_hub()
print(f"\n✅ Model available at: https://huggingface.co/{hub_model_id}")
else:
print(f"Model saved locally to: ./{OUTPUT_MODEL}")
print("\n" + "=" * 60)
print("Training complete!")
print("=" * 60)
if __name__ == "__main__":
main()