MiniLM - CoSQA
					Collection
				
Fine-tuned models of all-miniLM model on the CoSQA dataset
					• 
				6 items
				• 
				Updated
					
				
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Devy1/MiniLM-cosqa-128")
# Run inference
sentences = [
    'bottom 5 rows in python',
    'def table_top_abs(self):\n        """Returns the absolute position of table top"""\n        table_height = np.array([0, 0, self.table_full_size[2]])\n        return string_to_array(self.floor.get("pos")) + table_height',
    'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database.  does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.4828, -0.0626],
#         [ 0.4828,  1.0000, -0.0528],
#         [-0.0626, -0.0528,  1.0000]])
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string | 
| details | 
 | 
 | 
| anchor | positive | 
|---|---|
| 1d array in char datatype in python | def _convert_to_array(array_like, dtype): | 
| python condition non none | def _not(condition=None, **kwargs): | 
| accessing a column from a matrix in python | def get_column(self, X, column): | 
MultipleNegativesRankingLoss with these parameters:{
    "scale": 20.0,
    "similarity_fct": "cos_sim",
    "gather_across_devices": false
}
per_device_train_batch_size: 128fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss | 
|---|---|---|
| 0.0141 | 1 | 0.6881 | 
| 0.0282 | 2 | 0.4421 | 
| 0.0423 | 3 | 0.3636 | 
| 0.0563 | 4 | 0.4092 | 
| 0.0704 | 5 | 0.4558 | 
| 0.0845 | 6 | 0.5227 | 
| 0.0986 | 7 | 0.6376 | 
| 0.1127 | 8 | 0.4178 | 
| 0.1268 | 9 | 0.2803 | 
| 0.1408 | 10 | 0.3843 | 
| 0.1549 | 11 | 0.3998 | 
| 0.1690 | 12 | 0.3264 | 
| 0.1831 | 13 | 0.4509 | 
| 0.1972 | 14 | 0.4697 | 
| 0.2113 | 15 | 0.3188 | 
| 0.2254 | 16 | 0.5552 | 
| 0.2394 | 17 | 0.3308 | 
| 0.2535 | 18 | 0.4426 | 
| 0.2676 | 19 | 0.3757 | 
| 0.2817 | 20 | 0.2844 | 
| 0.2958 | 21 | 0.3652 | 
| 0.3099 | 22 | 0.341 | 
| 0.3239 | 23 | 0.3956 | 
| 0.3380 | 24 | 0.4095 | 
| 0.3521 | 25 | 0.3498 | 
| 0.3662 | 26 | 0.3957 | 
| 0.3803 | 27 | 0.4788 | 
| 0.3944 | 28 | 0.4238 | 
| 0.4085 | 29 | 0.3866 | 
| 0.4225 | 30 | 0.4671 | 
| 0.4366 | 31 | 0.358 | 
| 0.4507 | 32 | 0.4684 | 
| 0.4648 | 33 | 0.4192 | 
| 0.4789 | 34 | 0.3826 | 
| 0.4930 | 35 | 0.3387 | 
| 0.5070 | 36 | 0.4292 | 
| 0.5211 | 37 | 0.4378 | 
| 0.5352 | 38 | 0.3185 | 
| 0.5493 | 39 | 0.3687 | 
| 0.5634 | 40 | 0.3171 | 
| 0.5775 | 41 | 0.3343 | 
| 0.5915 | 42 | 0.4706 | 
| 0.6056 | 43 | 0.3747 | 
| 0.6197 | 44 | 0.3272 | 
| 0.6338 | 45 | 0.4118 | 
| 0.6479 | 46 | 0.4688 | 
| 0.6620 | 47 | 0.3684 | 
| 0.6761 | 48 | 0.3609 | 
| 0.6901 | 49 | 0.3521 | 
| 0.7042 | 50 | 0.3533 | 
| 0.7183 | 51 | 0.3788 | 
| 0.7324 | 52 | 0.3182 | 
| 0.7465 | 53 | 0.5793 | 
| 0.7606 | 54 | 0.2803 | 
| 0.7746 | 55 | 0.2695 | 
| 0.7887 | 56 | 0.2853 | 
| 0.8028 | 57 | 0.3116 | 
| 0.8169 | 58 | 0.3542 | 
| 0.8310 | 59 | 0.3445 | 
| 0.8451 | 60 | 0.2799 | 
| 0.8592 | 61 | 0.3178 | 
| 0.8732 | 62 | 0.4737 | 
| 0.8873 | 63 | 0.2121 | 
| 0.9014 | 64 | 0.2585 | 
| 0.9155 | 65 | 0.3238 | 
| 0.9296 | 66 | 0.3203 | 
| 0.9437 | 67 | 0.4475 | 
| 0.9577 | 68 | 0.3722 | 
| 0.9718 | 69 | 0.4047 | 
| 0.9859 | 70 | 0.3056 | 
| 1.0 | 71 | 0.316 | 
| 1.0141 | 72 | 0.2711 | 
| 1.0282 | 73 | 0.3488 | 
| 1.0423 | 74 | 0.2413 | 
| 1.0563 | 75 | 0.2434 | 
| 1.0704 | 76 | 0.2602 | 
| 1.0845 | 77 | 0.3006 | 
| 1.0986 | 78 | 0.237 | 
| 1.1127 | 79 | 0.2614 | 
| 1.1268 | 80 | 0.2456 | 
| 1.1408 | 81 | 0.2305 | 
| 1.1549 | 82 | 0.2774 | 
| 1.1690 | 83 | 0.3028 | 
| 1.1831 | 84 | 0.2037 | 
| 1.1972 | 85 | 0.2905 | 
| 1.2113 | 86 | 0.2048 | 
| 1.2254 | 87 | 0.2459 | 
| 1.2394 | 88 | 0.2291 | 
| 1.2535 | 89 | 0.2319 | 
| 1.2676 | 90 | 0.2755 | 
| 1.2817 | 91 | 0.3138 | 
| 1.2958 | 92 | 0.3555 | 
| 1.3099 | 93 | 0.2908 | 
| 1.3239 | 94 | 0.2602 | 
| 1.3380 | 95 | 0.2615 | 
| 1.3521 | 96 | 0.2041 | 
| 1.3662 | 97 | 0.2629 | 
| 1.3803 | 98 | 0.2508 | 
| 1.3944 | 99 | 0.248 | 
| 1.4085 | 100 | 0.2601 | 
| 1.4225 | 101 | 0.3114 | 
| 1.4366 | 102 | 0.3201 | 
| 1.4507 | 103 | 0.2574 | 
| 1.4648 | 104 | 0.2371 | 
| 1.4789 | 105 | 0.2041 | 
| 1.4930 | 106 | 0.2454 | 
| 1.5070 | 107 | 0.3303 | 
| 1.5211 | 108 | 0.29 | 
| 1.5352 | 109 | 0.3327 | 
| 1.5493 | 110 | 0.2741 | 
| 1.5634 | 111 | 0.258 | 
| 1.5775 | 112 | 0.3228 | 
| 1.5915 | 113 | 0.2989 | 
| 1.6056 | 114 | 0.2769 | 
| 1.6197 | 115 | 0.3744 | 
| 1.6338 | 116 | 0.3053 | 
| 1.6479 | 117 | 0.1675 | 
| 1.6620 | 118 | 0.2337 | 
| 1.6761 | 119 | 0.2505 | 
| 1.6901 | 120 | 0.2304 | 
| 1.7042 | 121 | 0.2369 | 
| 1.7183 | 122 | 0.1978 | 
| 1.7324 | 123 | 0.1929 | 
| 1.7465 | 124 | 0.2212 | 
| 1.7606 | 125 | 0.2175 | 
| 1.7746 | 126 | 0.1839 | 
| 1.7887 | 127 | 0.3059 | 
| 1.8028 | 128 | 0.1996 | 
| 1.8169 | 129 | 0.3 | 
| 1.8310 | 130 | 0.3051 | 
| 1.8451 | 131 | 0.2272 | 
| 1.8592 | 132 | 0.2503 | 
| 1.8732 | 133 | 0.3077 | 
| 1.8873 | 134 | 0.1847 | 
| 1.9014 | 135 | 0.2437 | 
| 1.9155 | 136 | 0.2333 | 
| 1.9296 | 137 | 0.2111 | 
| 1.9437 | 138 | 0.162 | 
| 1.9577 | 139 | 0.4412 | 
| 1.9718 | 140 | 0.1282 | 
| 1.9859 | 141 | 0.2651 | 
| 2.0 | 142 | 0.1055 | 
| 2.0141 | 143 | 0.2316 | 
| 2.0282 | 144 | 0.243 | 
| 2.0423 | 145 | 0.1892 | 
| 2.0563 | 146 | 0.19 | 
| 2.0704 | 147 | 0.172 | 
| 2.0845 | 148 | 0.185 | 
| 2.0986 | 149 | 0.2481 | 
| 2.1127 | 150 | 0.2651 | 
| 2.1268 | 151 | 0.2511 | 
| 2.1408 | 152 | 0.1761 | 
| 2.1549 | 153 | 0.2215 | 
| 2.1690 | 154 | 0.2275 | 
| 2.1831 | 155 | 0.2621 | 
| 2.1972 | 156 | 0.2255 | 
| 2.2113 | 157 | 0.201 | 
| 2.2254 | 158 | 0.1372 | 
| 2.2394 | 159 | 0.1941 | 
| 2.2535 | 160 | 0.2225 | 
| 2.2676 | 161 | 0.1713 | 
| 2.2817 | 162 | 0.1045 | 
| 2.2958 | 163 | 0.2273 | 
| 2.3099 | 164 | 0.2474 | 
| 2.3239 | 165 | 0.312 | 
| 2.3380 | 166 | 0.2274 | 
| 2.3521 | 167 | 0.1991 | 
| 2.3662 | 168 | 0.1511 | 
| 2.3803 | 169 | 0.2248 | 
| 2.3944 | 170 | 0.2025 | 
| 2.4085 | 171 | 0.258 | 
| 2.4225 | 172 | 0.2163 | 
| 2.4366 | 173 | 0.4012 | 
| 2.4507 | 174 | 0.2397 | 
| 2.4648 | 175 | 0.1978 | 
| 2.4789 | 176 | 0.2071 | 
| 2.4930 | 177 | 0.147 | 
| 2.5070 | 178 | 0.2424 | 
| 2.5211 | 179 | 0.1345 | 
| 2.5352 | 180 | 0.2506 | 
| 2.5493 | 181 | 0.1275 | 
| 2.5634 | 182 | 0.3284 | 
| 2.5775 | 183 | 0.2063 | 
| 2.5915 | 184 | 0.1483 | 
| 2.6056 | 185 | 0.2051 | 
| 2.6197 | 186 | 0.2439 | 
| 2.6338 | 187 | 0.252 | 
| 2.6479 | 188 | 0.2126 | 
| 2.6620 | 189 | 0.2156 | 
| 2.6761 | 190 | 0.153 | 
| 2.6901 | 191 | 0.2481 | 
| 2.7042 | 192 | 0.2481 | 
| 2.7183 | 193 | 0.1539 | 
| 2.7324 | 194 | 0.1224 | 
| 2.7465 | 195 | 0.1924 | 
| 2.7606 | 196 | 0.196 | 
| 2.7746 | 197 | 0.2172 | 
| 2.7887 | 198 | 0.1999 | 
| 2.8028 | 199 | 0.1932 | 
| 2.8169 | 200 | 0.1758 | 
| 2.8310 | 201 | 0.2173 | 
| 2.8451 | 202 | 0.1792 | 
| 2.8592 | 203 | 0.2228 | 
| 2.8732 | 204 | 0.2013 | 
| 2.8873 | 205 | 0.2197 | 
| 2.9014 | 206 | 0.1942 | 
| 2.9155 | 207 | 0.1798 | 
| 2.9296 | 208 | 0.2064 | 
| 2.9437 | 209 | 0.2901 | 
| 2.9577 | 210 | 0.202 | 
| 2.9718 | 211 | 0.1809 | 
| 2.9859 | 212 | 0.176 | 
| 3.0 | 213 | 0.1733 | 
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Base model
sentence-transformers/all-MiniLM-L6-v2