MiniLM - CoSQA
					Collection
				
Fine-tuned models of all-miniLM model on the CoSQA dataset
					• 
				6 items
				• 
				Updated
					
				
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Devy1/MiniLM-cosqa-256")
# Run inference
sentences = [
    'bottom 5 rows in python',
    'def table_top_abs(self):\n        """Returns the absolute position of table top"""\n        table_height = np.array([0, 0, self.table_full_size[2]])\n        return string_to_array(self.floor.get("pos")) + table_height',
    'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database.  does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.4934, -0.0548],
#         [ 0.4934,  1.0000, -0.0408],
#         [-0.0548, -0.0408,  1.0000]])
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string | 
| details | 
 | 
 | 
| anchor | positive | 
|---|---|
| 1d array in char datatype in python | def _convert_to_array(array_like, dtype): | 
| python condition non none | def _not(condition=None, **kwargs): | 
| accessing a column from a matrix in python | def get_column(self, X, column): | 
MultipleNegativesRankingLoss with these parameters:{
    "scale": 20.0,
    "similarity_fct": "cos_sim",
    "gather_across_devices": false
}
per_device_train_batch_size: 256fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 256per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss | 
|---|---|---|
| 0.0278 | 1 | 0.8774 | 
| 0.0556 | 2 | 0.6553 | 
| 0.0833 | 3 | 0.7565 | 
| 0.1111 | 4 | 0.7703 | 
| 0.1389 | 5 | 0.5969 | 
| 0.1667 | 6 | 0.5905 | 
| 0.1944 | 7 | 0.76 | 
| 0.2222 | 8 | 0.6663 | 
| 0.25 | 9 | 0.625 | 
| 0.2778 | 10 | 0.5882 | 
| 0.3056 | 11 | 0.623 | 
| 0.3333 | 12 | 0.5631 | 
| 0.3611 | 13 | 0.524 | 
| 0.3889 | 14 | 0.7467 | 
| 0.4167 | 15 | 0.6272 | 
| 0.4444 | 16 | 0.5395 | 
| 0.4722 | 17 | 0.6429 | 
| 0.5 | 18 | 0.6462 | 
| 0.5278 | 19 | 0.6576 | 
| 0.5556 | 20 | 0.6333 | 
| 0.5833 | 21 | 0.6013 | 
| 0.6111 | 22 | 0.5671 | 
| 0.6389 | 23 | 0.6835 | 
| 0.6667 | 24 | 0.5734 | 
| 0.6944 | 25 | 0.5969 | 
| 0.7222 | 26 | 0.5446 | 
| 0.75 | 27 | 0.6675 | 
| 0.7778 | 28 | 0.5319 | 
| 0.8056 | 29 | 0.5374 | 
| 0.8333 | 30 | 0.5085 | 
| 0.8611 | 31 | 0.6267 | 
| 0.8889 | 32 | 0.4322 | 
| 0.9167 | 33 | 0.5383 | 
| 0.9444 | 34 | 0.5712 | 
| 0.9722 | 35 | 0.5485 | 
| 1.0 | 36 | 0.214 | 
| 1.0278 | 37 | 0.515 | 
| 1.0556 | 38 | 0.4593 | 
| 1.0833 | 39 | 0.4891 | 
| 1.1111 | 40 | 0.3927 | 
| 1.1389 | 41 | 0.4909 | 
| 1.1667 | 42 | 0.4875 | 
| 1.1944 | 43 | 0.4611 | 
| 1.2222 | 44 | 0.409 | 
| 1.25 | 45 | 0.4307 | 
| 1.2778 | 46 | 0.4946 | 
| 1.3056 | 47 | 0.5795 | 
| 1.3333 | 48 | 0.4643 | 
| 1.3611 | 49 | 0.4998 | 
| 1.3889 | 50 | 0.4235 | 
| 1.4167 | 51 | 0.5118 | 
| 1.4444 | 52 | 0.4707 | 
| 1.4722 | 53 | 0.4705 | 
| 1.5 | 54 | 0.4539 | 
| 1.5278 | 55 | 0.5652 | 
| 1.5556 | 56 | 0.404 | 
| 1.5833 | 57 | 0.5273 | 
| 1.6111 | 58 | 0.5888 | 
| 1.6389 | 59 | 0.4139 | 
| 1.6667 | 60 | 0.4815 | 
| 1.6944 | 61 | 0.4656 | 
| 1.7222 | 62 | 0.3471 | 
| 1.75 | 63 | 0.4345 | 
| 1.7778 | 64 | 0.4375 | 
| 1.8056 | 65 | 0.3994 | 
| 1.8333 | 66 | 0.4184 | 
| 1.8611 | 67 | 0.4474 | 
| 1.8889 | 68 | 0.3888 | 
| 1.9167 | 69 | 0.3873 | 
| 1.9444 | 70 | 0.5267 | 
| 1.9722 | 71 | 0.3954 | 
| 2.0 | 72 | 0.0789 | 
| 2.0278 | 73 | 0.429 | 
| 2.0556 | 74 | 0.4103 | 
| 2.0833 | 75 | 0.3696 | 
| 2.1111 | 76 | 0.426 | 
| 2.1389 | 77 | 0.3726 | 
| 2.1667 | 78 | 0.4097 | 
| 2.1944 | 79 | 0.4385 | 
| 2.2222 | 80 | 0.3634 | 
| 2.25 | 81 | 0.346 | 
| 2.2778 | 82 | 0.3483 | 
| 2.3056 | 83 | 0.4737 | 
| 2.3333 | 84 | 0.4918 | 
| 2.3611 | 85 | 0.3644 | 
| 2.3889 | 86 | 0.4132 | 
| 2.4167 | 87 | 0.422 | 
| 2.4444 | 88 | 0.5443 | 
| 2.4722 | 89 | 0.4509 | 
| 2.5 | 90 | 0.3926 | 
| 2.5278 | 91 | 0.3734 | 
| 2.5556 | 92 | 0.3753 | 
| 2.5833 | 93 | 0.3722 | 
| 2.6111 | 94 | 0.4094 | 
| 2.6389 | 95 | 0.4425 | 
| 2.6667 | 96 | 0.374 | 
| 2.6944 | 97 | 0.4313 | 
| 2.7222 | 98 | 0.3245 | 
| 2.75 | 99 | 0.3582 | 
| 2.7778 | 100 | 0.3581 | 
| 2.8056 | 101 | 0.3798 | 
| 2.8333 | 102 | 0.3791 | 
| 2.8611 | 103 | 0.3892 | 
| 2.8889 | 104 | 0.3989 | 
| 2.9167 | 105 | 0.3393 | 
| 2.9444 | 106 | 0.457 | 
| 2.9722 | 107 | 0.3486 | 
| 3.0 | 108 | 0.1888 | 
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Base model
sentence-transformers/all-MiniLM-L6-v2