MiniLM - CoSQA
Collection
Fine-tuned models of all-miniLM model on the CoSQA dataset
•
6 items
•
Updated
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Devy1/MiniLM-cosqa-512")
# Run inference
sentences = [
'bottom 5 rows in python',
'def table_top_abs(self):\n """Returns the absolute position of table top"""\n table_height = np.array([0, 0, self.table_full_size[2]])\n return string_to_array(self.floor.get("pos")) + table_height',
'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database. does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.4537, -0.0817],
# [ 0.4537, 1.0000, -0.0463],
# [-0.0817, -0.0463, 1.0000]])
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
1d array in char datatype in python |
def _convert_to_array(array_like, dtype): |
python condition non none |
def _not(condition=None, **kwargs): |
accessing a column from a matrix in python |
def get_column(self, X, column): |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
per_device_train_batch_size: 512fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 512per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss |
|---|---|---|
| 0.0556 | 1 | 1.2259 |
| 0.1111 | 2 | 1.1589 |
| 0.1667 | 3 | 0.9588 |
| 0.2222 | 4 | 1.0265 |
| 0.2778 | 5 | 0.9783 |
| 0.3333 | 6 | 0.9464 |
| 0.3889 | 7 | 0.9527 |
| 0.4444 | 8 | 0.969 |
| 0.5 | 9 | 1.0237 |
| 0.5556 | 10 | 1.0134 |
| 0.6111 | 11 | 0.9297 |
| 0.6667 | 12 | 0.9877 |
| 0.7222 | 13 | 0.9531 |
| 0.7778 | 14 | 0.9156 |
| 0.8333 | 15 | 0.8613 |
| 0.8889 | 16 | 0.83 |
| 0.9444 | 17 | 0.8991 |
| 1.0 | 18 | 0.6764 |
| 1.0556 | 19 | 0.8545 |
| 1.1111 | 20 | 0.7454 |
| 1.1667 | 21 | 0.834 |
| 1.2222 | 22 | 0.7625 |
| 1.2778 | 23 | 0.7808 |
| 1.3333 | 24 | 0.817 |
| 1.3889 | 25 | 0.8032 |
| 1.4444 | 26 | 0.7854 |
| 1.5 | 27 | 0.7376 |
| 1.5556 | 28 | 0.8346 |
| 1.6111 | 29 | 0.8738 |
| 1.6667 | 30 | 0.7524 |
| 1.7222 | 31 | 0.72 |
| 1.7778 | 32 | 0.711 |
| 1.8333 | 33 | 0.7498 |
| 1.8889 | 34 | 0.7597 |
| 1.9444 | 35 | 0.7883 |
| 2.0 | 36 | 0.5038 |
| 2.0556 | 37 | 0.6932 |
| 2.1111 | 38 | 0.7273 |
| 2.1667 | 39 | 0.6723 |
| 2.2222 | 40 | 0.7059 |
| 2.2778 | 41 | 0.6159 |
| 2.3333 | 42 | 0.809 |
| 2.3889 | 43 | 0.6959 |
| 2.4444 | 44 | 0.7881 |
| 2.5 | 45 | 0.6861 |
| 2.5556 | 46 | 0.6545 |
| 2.6111 | 47 | 0.7235 |
| 2.6667 | 48 | 0.7031 |
| 2.7222 | 49 | 0.6679 |
| 2.7778 | 50 | 0.6835 |
| 2.8333 | 51 | 0.6773 |
| 2.8889 | 52 | 0.6972 |
| 2.9444 | 53 | 0.7043 |
| 3.0 | 54 | 0.4647 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
sentence-transformers/all-MiniLM-L6-v2