File size: 35,715 Bytes
5040112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eec723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5040112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eec723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5040112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200e3ef
5040112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eec723
 
 
 
 
 
 
5040112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eec723
5040112
7eec723
5040112
 
7eec723
 
 
 
 
 
 
 
 
5040112
 
 
 
7eec723
 
5040112
7eec723
 
 
 
5040112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eec723
5040112
 
 
7eec723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5040112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eec723
 
5040112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19930b4
5040112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
from typing import Callable, Optional, Union
from dataclasses import dataclass

import torch
from torch import nn
import torch.nn.functional as F
from functools import partial

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import auto_docstring, can_return_tuple, logging
from .configuration import Fast_dLLM_QwenConfig
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
from einops import rearrange, repeat

logger = logging.get_logger(__name__)


@dataclass
class CausalLMOutputWithPastAndBlockCache(CausalLMOutputWithPast):
    block_past_key_values: Optional[Cache] = None

@dataclass
class BaseModelOutputWithPastAndBlockCache(BaseModelOutputWithPast):
    block_past_key_values: Optional[Cache] = None


@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
def fused_flex_attention(q, k, v, mask=None):
    return flex_attention(q, k, v, block_mask=mask, enable_gqa=True)

def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
    """
    Constructs the specialized block diffusion attention mask for training
    composed of three masks:
    - **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
    - **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
    - **Block Causal Mask (M_BC)**: Attention to update x0

    Args:
        b, h: Batch and head indices (ignored for mask logic).
        q_idx, kv_idx: Query and Key indices.
        seq_len: Total sequence length.
        block_size: Defines the block structure.

    Returns:
        A boolean attention mask.
    """
    # Indicate whether token belongs to xt or x0
    x0_flag_q = (q_idx >= n)
    x0_flag_kv = (kv_idx >= n)

    # Compute block indices
    block_q = torch.where(x0_flag_q == 1,
                        (q_idx - n) // block_size,
                        q_idx // block_size)
    block_kv = torch.where(x0_flag_kv == 1,
                        (kv_idx - n) // block_size,
                        kv_idx // block_size)

    # **1. Block Diagonal Mask (M_BD) **
    block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)

    # **2. Offset Block-Causal Mask (M_OBC) **
    offset_block_causal = (
    (block_q > block_kv)
    & (x0_flag_kv == 1)
    & (x0_flag_q == 0)
    )

    # **3. Block-Causal Mask (M_BC) **
    block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)

    # **4. Combine Masks **
    return block_diagonal | offset_block_causal | block_causal

def eval_block_diff_mask(q_idx, kv_idx, block_size=None):
    # Compute block indices
    block_q = q_idx // block_size
    block_kv = kv_idx // block_size

    return block_q >= block_kv

class Fast_dLLM_QwenMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class Fast_dLLM_QwenAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True
        self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
        self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
        self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
        self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
        self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        update_past_key_values: Optional[bool] = False,
        block_past_key_values: Optional[Cache] = None,
        replace_position: Optional[int] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
        if self.training:
            #split q into two parts
            q_1 = query_states[:,:,:query_states.shape[2]//2]
            q_2 = query_states[:,:,query_states.shape[2]//2:]
            #split k into two parts
            k_1 = key_states[:,:,:key_states.shape[2]//2]
            k_2 = key_states[:,:,key_states.shape[2]//2:]
            q_1, k_1 = apply_rotary_pos_emb(q_1, k_1, cos, sin)
            q_2, k_2 = apply_rotary_pos_emb(q_2, k_2, cos, sin)
            query_states = torch.cat((q_1, q_2), dim=-2)
            key_states = torch.cat((k_1, k_2), dim=-2)
        else:
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if block_past_key_values is not None:
            if len(block_past_key_values) <= self.layer_idx:
                cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
                key_states, value_states = block_past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
            else:
                block_cache_key_states = block_past_key_values[self.layer_idx][0]
                block_cache_value_states = block_past_key_values[self.layer_idx][1]
                
                block_cache_key_states[:, :, replace_position:replace_position+key_states.shape[2]] = key_states
                block_cache_value_states[:, :, replace_position:replace_position+value_states.shape[2]] = value_states
                key_states = block_cache_key_states
                value_states = block_cache_value_states

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            if update_past_key_values:
                cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
                key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
            elif len(past_key_value) > self.layer_idx:
                key_states = torch.cat((past_key_value[self.layer_idx][0], key_states), dim=-2)
                value_states = torch.cat((past_key_value[self.layer_idx][1], value_states), dim=-2)

        if self.training:
            attn_output = fused_flex_attention(query_states, key_states, value_states, mask=attention_mask)
            attn_output = attn_output.transpose(1, 2).contiguous()
        else:
            attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"]

            attn_output, attn_weights = attention_interface(
                self,
                query_states,
                key_states,
                value_states,
                attention_mask,
                is_causal=False,
                dropout=0.0 if not self.training else self.attention_dropout,
                scaling=self.scaling,
                sliding_window=self.sliding_window,  # main diff with Llama
                **kwargs,
            )

        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output

@use_kernel_forward_from_hub("RMSNorm")
class Fast_dLLM_QwenRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        Fast_dLLM_QwenRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class Fast_dLLM_QwenDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = Fast_dLLM_QwenAttention(config=config, layer_idx=layer_idx)

        self.mlp = Fast_dLLM_QwenMLP(config)
        self.input_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.attention_type = config.layer_types[layer_idx]

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        update_past_key_values: Optional[bool] = False,
        use_block_cache: Optional[bool] = False,
        block_past_key_values: Optional[Cache] = None,
        replace_position: Optional[int] = None,
        **kwargs
    ) -> tuple[torch.Tensor]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        # Self Attention
        hidden_states = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            update_past_key_values=update_past_key_values,
            use_block_cache=use_block_cache,
            block_past_key_values=block_past_key_values,
            replace_position=replace_position,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states



class Fast_dLLM_QwenPreTrainedModel(PreTrainedModel):
    config_class = Fast_dLLM_QwenConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Fast_dLLM_QwenDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_flex_attn = True
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True
    _supports_attention_backend = True
    _can_record_outputs = {
        "hidden_states": Fast_dLLM_QwenDecoderLayer,
        "attentions": Fast_dLLM_QwenAttention,
    }

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, Fast_dLLM_QwenRMSNorm):
            module.weight.data.fill_(1.0)


class Fast_dLLM_QwenRotaryEmbedding(nn.Module):
    def __init__(self, config: Fast_dLLM_QwenConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)



class Fast_dLLM_QwenModel(Fast_dLLM_QwenPreTrainedModel):
    def __init__(self, config: Fast_dLLM_QwenConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.bd_size = config.bd_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [Fast_dLLM_QwenDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = Fast_dLLM_QwenRotaryEmbedding(config=config)
        self.gradient_checkpointing = True

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value


    def eval_mask(self, seqlen, block_size, cache_seq_len):
        q_indices = torch.arange(seqlen) + cache_seq_len
        k_indices = torch.arange(seqlen + cache_seq_len)
        mask = eval_block_diff_mask(
            q_idx=q_indices[:, None], 
            kv_idx=k_indices[None, :], 
            block_size=block_size
        )
        return mask

    def gen_mask(self, seqlen, block_size, B, H):
        mask = create_block_mask(
            partial(block_diff_mask, block_size=block_size, n=seqlen),
            B=B, H=H, Q_LEN=seqlen*2, KV_LEN=seqlen*2)

        return mask

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        update_past_key_values: Optional[bool] = False,
        block_size: Optional[int] = 32,
        use_block_cache: Optional[bool] = False,
        block_past_key_values: Optional[Cache] = None,
        replace_position: Optional[int] = None,
        **kwargs
    ) -> BaseModelOutputWithPast:
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if use_block_cache and block_past_key_values is None:
            block_past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            if self.training:
                cache_position = torch.arange(
                    past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1]//2, device=inputs_embeds.device
                )
            else:
                if use_block_cache:
                    block_start_position = past_seen_tokens+replace_position if replace_position is not None else past_seen_tokens
                    cache_position = torch.arange(
                        block_start_position, block_start_position + inputs_embeds.shape[1], device=inputs_embeds.device
                    )
                else:
                    cache_position = torch.arange(
                        past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1] if not self.training else inputs_embeds.shape[1]//2, device=inputs_embeds.device
                    )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)
        
        if self.training:
            attention_mask = self.gen_mask(labels.shape[1], self.bd_size, labels.shape[0], self.config.num_attention_heads).to(device=inputs_embeds.device)
        else:
            if use_block_cache and block_past_key_values.get_seq_length() != 0:
                attention_mask = None
            else:
                attention_mask = self.eval_mask(input_ids.shape[1], block_size, past_key_values.get_seq_length() if past_key_values is not None else 0).to(device=inputs_embeds.device)

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        for decoder_layer in self.layers[: self.config.num_hidden_layers]:
            hidden_states = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                update_past_key_values=update_past_key_values,
                use_block_cache=use_block_cache,
                block_past_key_values=block_past_key_values,
                replace_position=replace_position,
                **kwargs,
            )

        hidden_states = self.norm(hidden_states)
        return BaseModelOutputWithPastAndBlockCache(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            block_past_key_values=block_past_key_values if use_block_cache else None,
        )


class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}
    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

    def __init__(self, config):
        super().__init__(config)
        self.model = Fast_dLLM_QwenModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        update_past_key_values: Optional[bool] = False,
        block_size: Optional[int] = 32,
        use_block_cache: Optional[bool] = False,
        block_past_key_values: Optional[Cache] = None,
        replace_position: Optional[int] = None,
        mask_id: Optional[int] = 151665,
        **kwargs
    ) -> CausalLMOutputWithPastAndBlockCache:

        if self.training:
            original_labels = labels.clone()
            original_input_ids = input_ids.clone()

            noisy_input_ids = input_ids.clone()

            input_ids = input_ids.reshape(input_ids.shape[0] * input_ids.shape[1] // self.model.bd_size, self.model.bd_size)
            b, l = input_ids.shape
            t = torch.rand((b,), device=input_ids.device)
            eps=1e-3
            p_mask = (1 - eps) * t + eps
            p_mask = p_mask[:, None].repeat(1, l)

            mask_indices = torch.rand((b, l), device=input_ids.device) < p_mask
            x_t = torch.where(mask_indices, mask_id, input_ids).reshape(labels.shape)
            noisy_input_ids[labels != -100] = x_t[labels != -100]
            mask = (noisy_input_ids != mask_id)
            labels[mask] = -100
            input_ids = torch.cat([noisy_input_ids, input_ids.reshape(labels.shape)], dim=1)

            complementary_noisy_input_ids = original_input_ids.clone()
            complementary_labels = original_labels.clone()

            complementary_input_ids = original_input_ids.reshape(original_input_ids.shape[0] * original_input_ids.shape[1] // self.model.bd_size, self.model.bd_size)

            complementary_mask_indices = ~mask_indices
            complementary_x_t = torch.where(complementary_mask_indices, mask_id, complementary_input_ids).reshape(labels.shape)
            complementary_noisy_input_ids[complementary_labels != -100] = complementary_x_t[complementary_labels != -100]
            complementary_mask = (complementary_noisy_input_ids != mask_id)
            complementary_labels[complementary_mask] = -100
            complementary_input_ids = torch.cat([complementary_noisy_input_ids, complementary_input_ids.reshape(complementary_labels.shape)], dim=1)

            input_ids = torch.cat([input_ids, complementary_input_ids], dim=0)
            labels = torch.cat([labels, complementary_labels], dim=0)

        outputs: BaseModelOutputWithPastAndBlockCache = self.model(
            input_ids=input_ids,
            labels=labels,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            cache_position=cache_position,
            update_past_key_values=update_past_key_values,
            block_size=block_size,
            use_block_cache=use_block_cache,
            block_past_key_values=block_past_key_values,
            replace_position=replace_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        if self.training:
            hidden_states = hidden_states[:, :hidden_states.shape[1]//2, :]
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

        return CausalLMOutputWithPastAndBlockCache(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            block_past_key_values=outputs.block_past_key_values,
        )

    @torch.no_grad()
    def generate(
        self,
        input_ids,
        max_new_tokens, 
        mask_id=151665,
        threshold=1,
        small_block_size=8,
        block_size=32,
        stop_token=151645,
        stopping_criteria=None,
        top_p=0.95,
        temperature=0,
        use_block_cache=False,
        **kwargs
    ):
        num_blocks = max_new_tokens // block_size
        original_input_length = input_ids.shape[1]

        if input_ids.shape[1] > block_size:
            output = self.forward(input_ids=input_ids[:, :(input_ids.shape[1] // block_size * block_size)], use_cache=True, update_past_key_values=True, block_size=block_size)
            logits, past_key_values = output.logits, output.past_key_values
            if input_ids.shape[1] % block_size == 0:
                next_token = logits[:, -1:, :].argmax(dim=-1)
                input_ids = torch.cat([input_ids, next_token], dim=1)
        else:
            past_key_values = None

        num_small_blocks = block_size // small_block_size

        for block_idx in range(num_blocks):
            if stop_token in input_ids[:, original_input_length:]:
                break
            prompt_length = input_ids.shape[1]
            # Initialize x_init with mask_id
            x_init = mask_id * torch.ones((input_ids.shape[0], block_size-prompt_length%block_size), device=self.device, dtype=torch.long)
            x_init = torch.cat([input_ids, x_init], dim=1)

            x_t = x_init.clone()
            block_past_key_values = None
            while True:
                if stop_token in x_t[:, prompt_length:]:
                    stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
                    if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
                        break
                mask_idx = (x_t[:, -block_size:] == mask_id)
                # Decode a complete block, update cache, and generate the next token
                if mask_idx.sum() == 0:
                    output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=True, block_size=block_size)
                    logits, past_key_values = output.logits, output.past_key_values
                    next_token = logits[:, -1:, :].argmax(dim=-1)
                    x_t = torch.cat([x_t, next_token], dim=1)
                    break
                for small_block_idx in range(num_small_blocks):
                    small_block_start_idx = small_block_idx * small_block_size
                    small_block_end_idx = small_block_start_idx + small_block_size

                    start = -block_size + small_block_start_idx
                    end = None if block_size == small_block_end_idx else -block_size + small_block_end_idx
                    while True:
                        mask_idx = (x_t[:, -block_size:] == mask_id)
                        if mask_idx[:, start:end].sum() == 0:
                            break
                        if stop_token in x_t[:, prompt_length:]:
                            stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
                            if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
                                break

                        if use_block_cache:
                            if block_past_key_values is None or (x_t[:, -block_size+small_block_start_idx] == mask_id).any():
                                output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True)
                                logits, block_past_key_values = output.logits, output.block_past_key_values
                                logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
                                logits = logits[:, start:end]
                            else:
                                logits = self.forward(input_ids=x_t[:,start:end], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True, block_past_key_values=block_past_key_values, replace_position=small_block_start_idx).logits
                                logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
                        else:
                            logits = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False).logits
                            logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
                            logits = logits[:, start:end]


                        x_1, p_1t = self.sample_with_top_p(logits, top_p=top_p, temperature=temperature)
                        # Select tokens with probability greater than threshold from p_1t
                        x1_p = torch.squeeze(torch.gather(p_1t, dim=-1, index=torch.unsqueeze(x_1, -1)), -1)
                        x1_p = torch.where(mask_idx[:, start:end], x1_p, -torch.inf)

                        unmask_idx = (x1_p > threshold)
                        max_prob_idx = x1_p.argmax(dim=-1)
                        unmask_idx[torch.arange(x_1.shape[0]), max_prob_idx] = True
                        unmask_idx = unmask_idx & mask_idx[:, start:end]

                        x_t[:, start:end][unmask_idx] = x_1[unmask_idx]

            input_ids = x_t
        # Truncate stop_token
        if stop_token in input_ids[:, original_input_length:]:
            stop_token_idx = (input_ids[:, original_input_length:] == stop_token).nonzero()[0][1]
            input_ids = input_ids[:, :stop_token_idx+original_input_length+1]
        return input_ids

    def sample_with_top_p(self, logits, top_p=0.95, temperature=1.0):
        # Calculate probabilities
        if temperature > 0:
            scaled_logits = logits / temperature
        else:
            p_1t = torch.softmax(logits, dim=-1)
            x_1 = p_1t.argmax(dim=-1)
            return x_1, p_1t
                            
        probs = F.softmax(scaled_logits, dim=-1)

        sorted_probs, sorted_indices = torch.sort(probs, descending=True)
        cumulative_probs = torch.cumsum(sorted_probs, dim=-1)

        sorted_indices_to_remove = cumulative_probs > top_p
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        indices_to_remove = torch.zeros_like(probs, dtype=torch.bool).scatter_(
            dim=-1, index=sorted_indices, src=sorted_indices_to_remove
        )
        
        probs[indices_to_remove] = 0

        # Renormalize so that the probabilities of remaining tokens sum to 1
        # Add a small epsilon value to prevent division by zero
        probs_sum = torch.sum(probs, dim=-1, keepdim=True)
        normalized_probs = probs / probs_sum

        p_1t = normalized_probs
        x_1 = torch.multinomial(p_1t[0], num_samples=1).unsqueeze(0).squeeze(-1)

        return x_1, p_1t