|
|
from typing import Callable, Optional, Union |
|
|
from dataclasses import dataclass |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
import torch.nn.functional as F |
|
|
from functools import partial |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.integrations import use_kernel_forward_from_hub |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
CausalLMOutputWithPast, |
|
|
) |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import auto_docstring, can_return_tuple, logging |
|
|
from .configuration import Fast_dLLM_QwenConfig |
|
|
from torch.nn.attention.flex_attention import flex_attention, create_block_mask |
|
|
from einops import rearrange, repeat |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class CausalLMOutputWithPastAndBlockCache(CausalLMOutputWithPast): |
|
|
block_past_key_values: Optional[Cache] = None |
|
|
|
|
|
@dataclass |
|
|
class BaseModelOutputWithPastAndBlockCache(BaseModelOutputWithPast): |
|
|
block_past_key_values: Optional[Cache] = None |
|
|
|
|
|
|
|
|
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs") |
|
|
def fused_flex_attention(q, k, v, mask=None): |
|
|
return flex_attention(q, k, v, block_mask=mask, enable_gqa=True) |
|
|
|
|
|
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None): |
|
|
""" |
|
|
Constructs the specialized block diffusion attention mask for training |
|
|
composed of three masks: |
|
|
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks |
|
|
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context |
|
|
- **Block Causal Mask (M_BC)**: Attention to update x0 |
|
|
|
|
|
Args: |
|
|
b, h: Batch and head indices (ignored for mask logic). |
|
|
q_idx, kv_idx: Query and Key indices. |
|
|
seq_len: Total sequence length. |
|
|
block_size: Defines the block structure. |
|
|
|
|
|
Returns: |
|
|
A boolean attention mask. |
|
|
""" |
|
|
|
|
|
x0_flag_q = (q_idx >= n) |
|
|
x0_flag_kv = (kv_idx >= n) |
|
|
|
|
|
|
|
|
block_q = torch.where(x0_flag_q == 1, |
|
|
(q_idx - n) // block_size, |
|
|
q_idx // block_size) |
|
|
block_kv = torch.where(x0_flag_kv == 1, |
|
|
(kv_idx - n) // block_size, |
|
|
kv_idx // block_size) |
|
|
|
|
|
|
|
|
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv) |
|
|
|
|
|
|
|
|
offset_block_causal = ( |
|
|
(block_q > block_kv) |
|
|
& (x0_flag_kv == 1) |
|
|
& (x0_flag_q == 0) |
|
|
) |
|
|
|
|
|
|
|
|
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1) |
|
|
|
|
|
|
|
|
return block_diagonal | offset_block_causal | block_causal |
|
|
|
|
|
def eval_block_diff_mask(q_idx, kv_idx, block_size=None): |
|
|
|
|
|
block_q = q_idx // block_size |
|
|
block_kv = kv_idx // block_size |
|
|
|
|
|
return block_q >= block_kv |
|
|
|
|
|
class Fast_dLLM_QwenMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
class Fast_dLLM_QwenAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) |
|
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) |
|
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) |
|
|
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
update_past_key_values: Optional[bool] = False, |
|
|
block_past_key_values: Optional[Cache] = None, |
|
|
replace_position: Optional[int] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
|
|
|
if self.training: |
|
|
|
|
|
q_1 = query_states[:,:,:query_states.shape[2]//2] |
|
|
q_2 = query_states[:,:,query_states.shape[2]//2:] |
|
|
|
|
|
k_1 = key_states[:,:,:key_states.shape[2]//2] |
|
|
k_2 = key_states[:,:,key_states.shape[2]//2:] |
|
|
q_1, k_1 = apply_rotary_pos_emb(q_1, k_1, cos, sin) |
|
|
q_2, k_2 = apply_rotary_pos_emb(q_2, k_2, cos, sin) |
|
|
query_states = torch.cat((q_1, q_2), dim=-2) |
|
|
key_states = torch.cat((k_1, k_2), dim=-2) |
|
|
else: |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if block_past_key_values is not None: |
|
|
if len(block_past_key_values) <= self.layer_idx: |
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = block_past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
else: |
|
|
block_cache_key_states = block_past_key_values[self.layer_idx][0] |
|
|
block_cache_value_states = block_past_key_values[self.layer_idx][1] |
|
|
|
|
|
block_cache_key_states[:, :, replace_position:replace_position+key_states.shape[2]] = key_states |
|
|
block_cache_value_states[:, :, replace_position:replace_position+value_states.shape[2]] = value_states |
|
|
key_states = block_cache_key_states |
|
|
value_states = block_cache_value_states |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
if update_past_key_values: |
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
elif len(past_key_value) > self.layer_idx: |
|
|
key_states = torch.cat((past_key_value[self.layer_idx][0], key_states), dim=-2) |
|
|
value_states = torch.cat((past_key_value[self.layer_idx][1], value_states), dim=-2) |
|
|
|
|
|
if self.training: |
|
|
attn_output = fused_flex_attention(query_states, key_states, value_states, mask=attention_mask) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
else: |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
is_causal=False, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output |
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
|
class Fast_dLLM_QwenRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
Fast_dLLM_QwenRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
class Fast_dLLM_QwenDecoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = Fast_dLLM_QwenAttention(config=config, layer_idx=layer_idx) |
|
|
|
|
|
self.mlp = Fast_dLLM_QwenMLP(config) |
|
|
self.input_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.attention_type = config.layer_types[layer_idx] |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
update_past_key_values: Optional[bool] = False, |
|
|
use_block_cache: Optional[bool] = False, |
|
|
block_past_key_values: Optional[Cache] = None, |
|
|
replace_position: Optional[int] = None, |
|
|
**kwargs |
|
|
) -> tuple[torch.Tensor]: |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
update_past_key_values=update_past_key_values, |
|
|
use_block_cache=use_block_cache, |
|
|
block_past_key_values=block_past_key_values, |
|
|
replace_position=replace_position, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
|
|
|
class Fast_dLLM_QwenPreTrainedModel(PreTrainedModel): |
|
|
config_class = Fast_dLLM_QwenConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["Fast_dLLM_QwenDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_supports_cache_class = True |
|
|
_supports_quantized_cache = True |
|
|
_supports_static_cache = True |
|
|
_supports_attention_backend = True |
|
|
_can_record_outputs = { |
|
|
"hidden_states": Fast_dLLM_QwenDecoderLayer, |
|
|
"attentions": Fast_dLLM_QwenAttention, |
|
|
} |
|
|
|
|
|
def _init_weights(self, module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
elif isinstance(module, Fast_dLLM_QwenRMSNorm): |
|
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
|
|
|
class Fast_dLLM_QwenRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: Fast_dLLM_QwenConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
|
|
|
class Fast_dLLM_QwenModel(Fast_dLLM_QwenPreTrainedModel): |
|
|
def __init__(self, config: Fast_dLLM_QwenConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
self.bd_size = config.bd_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[Fast_dLLM_QwenDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = Fast_dLLM_QwenRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = True |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
|
|
|
def eval_mask(self, seqlen, block_size, cache_seq_len): |
|
|
q_indices = torch.arange(seqlen) + cache_seq_len |
|
|
k_indices = torch.arange(seqlen + cache_seq_len) |
|
|
mask = eval_block_diff_mask( |
|
|
q_idx=q_indices[:, None], |
|
|
kv_idx=k_indices[None, :], |
|
|
block_size=block_size |
|
|
) |
|
|
return mask |
|
|
|
|
|
def gen_mask(self, seqlen, block_size, B, H): |
|
|
mask = create_block_mask( |
|
|
partial(block_diff_mask, block_size=block_size, n=seqlen), |
|
|
B=B, H=H, Q_LEN=seqlen*2, KV_LEN=seqlen*2) |
|
|
|
|
|
return mask |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
update_past_key_values: Optional[bool] = False, |
|
|
block_size: Optional[int] = 32, |
|
|
use_block_cache: Optional[bool] = False, |
|
|
block_past_key_values: Optional[Cache] = None, |
|
|
replace_position: Optional[int] = None, |
|
|
**kwargs |
|
|
) -> BaseModelOutputWithPast: |
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if use_block_cache and block_past_key_values is None: |
|
|
block_past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
if self.training: |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1]//2, device=inputs_embeds.device |
|
|
) |
|
|
else: |
|
|
if use_block_cache: |
|
|
block_start_position = past_seen_tokens+replace_position if replace_position is not None else past_seen_tokens |
|
|
cache_position = torch.arange( |
|
|
block_start_position, block_start_position + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
else: |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1] if not self.training else inputs_embeds.shape[1]//2, device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
if self.training: |
|
|
attention_mask = self.gen_mask(labels.shape[1], self.bd_size, labels.shape[0], self.config.num_attention_heads).to(device=inputs_embeds.device) |
|
|
else: |
|
|
if use_block_cache and block_past_key_values.get_seq_length() != 0: |
|
|
attention_mask = None |
|
|
else: |
|
|
attention_mask = self.eval_mask(input_ids.shape[1], block_size, past_key_values.get_seq_length() if past_key_values is not None else 0).to(device=inputs_embeds.device) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
hidden_states = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
update_past_key_values=update_past_key_values, |
|
|
use_block_cache=use_block_cache, |
|
|
block_past_key_values=block_past_key_values, |
|
|
replace_position=replace_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
return BaseModelOutputWithPastAndBlockCache( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
block_past_key_values=block_past_key_values if use_block_cache else None, |
|
|
) |
|
|
|
|
|
|
|
|
class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = Fast_dLLM_QwenModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
@can_return_tuple |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
update_past_key_values: Optional[bool] = False, |
|
|
block_size: Optional[int] = 32, |
|
|
use_block_cache: Optional[bool] = False, |
|
|
block_past_key_values: Optional[Cache] = None, |
|
|
replace_position: Optional[int] = None, |
|
|
mask_id: Optional[int] = 151665, |
|
|
**kwargs |
|
|
) -> CausalLMOutputWithPastAndBlockCache: |
|
|
|
|
|
if self.training: |
|
|
original_labels = labels.clone() |
|
|
original_input_ids = input_ids.clone() |
|
|
|
|
|
noisy_input_ids = input_ids.clone() |
|
|
|
|
|
input_ids = input_ids.reshape(input_ids.shape[0] * input_ids.shape[1] // self.model.bd_size, self.model.bd_size) |
|
|
b, l = input_ids.shape |
|
|
t = torch.rand((b,), device=input_ids.device) |
|
|
eps=1e-3 |
|
|
p_mask = (1 - eps) * t + eps |
|
|
p_mask = p_mask[:, None].repeat(1, l) |
|
|
|
|
|
mask_indices = torch.rand((b, l), device=input_ids.device) < p_mask |
|
|
x_t = torch.where(mask_indices, mask_id, input_ids).reshape(labels.shape) |
|
|
noisy_input_ids[labels != -100] = x_t[labels != -100] |
|
|
mask = (noisy_input_ids != mask_id) |
|
|
labels[mask] = -100 |
|
|
input_ids = torch.cat([noisy_input_ids, input_ids.reshape(labels.shape)], dim=1) |
|
|
|
|
|
complementary_noisy_input_ids = original_input_ids.clone() |
|
|
complementary_labels = original_labels.clone() |
|
|
|
|
|
complementary_input_ids = original_input_ids.reshape(original_input_ids.shape[0] * original_input_ids.shape[1] // self.model.bd_size, self.model.bd_size) |
|
|
|
|
|
complementary_mask_indices = ~mask_indices |
|
|
complementary_x_t = torch.where(complementary_mask_indices, mask_id, complementary_input_ids).reshape(labels.shape) |
|
|
complementary_noisy_input_ids[complementary_labels != -100] = complementary_x_t[complementary_labels != -100] |
|
|
complementary_mask = (complementary_noisy_input_ids != mask_id) |
|
|
complementary_labels[complementary_mask] = -100 |
|
|
complementary_input_ids = torch.cat([complementary_noisy_input_ids, complementary_input_ids.reshape(complementary_labels.shape)], dim=1) |
|
|
|
|
|
input_ids = torch.cat([input_ids, complementary_input_ids], dim=0) |
|
|
labels = torch.cat([labels, complementary_labels], dim=0) |
|
|
|
|
|
outputs: BaseModelOutputWithPastAndBlockCache = self.model( |
|
|
input_ids=input_ids, |
|
|
labels=labels, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
update_past_key_values=update_past_key_values, |
|
|
block_size=block_size, |
|
|
use_block_cache=use_block_cache, |
|
|
block_past_key_values=block_past_key_values, |
|
|
replace_position=replace_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
if self.training: |
|
|
hidden_states = hidden_states[:, :hidden_states.shape[1]//2, :] |
|
|
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
|
|
return CausalLMOutputWithPastAndBlockCache( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
block_past_key_values=outputs.block_past_key_values, |
|
|
) |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate( |
|
|
self, |
|
|
input_ids, |
|
|
max_new_tokens, |
|
|
mask_id=151665, |
|
|
threshold=1, |
|
|
small_block_size=8, |
|
|
block_size=32, |
|
|
stop_token=151645, |
|
|
stopping_criteria=None, |
|
|
top_p=0.95, |
|
|
temperature=0, |
|
|
use_block_cache=False, |
|
|
**kwargs |
|
|
): |
|
|
num_blocks = max_new_tokens // block_size |
|
|
original_input_length = input_ids.shape[1] |
|
|
|
|
|
if input_ids.shape[1] > block_size: |
|
|
output = self.forward(input_ids=input_ids[:, :(input_ids.shape[1] // block_size * block_size)], use_cache=True, update_past_key_values=True, block_size=block_size) |
|
|
logits, past_key_values = output.logits, output.past_key_values |
|
|
if input_ids.shape[1] % block_size == 0: |
|
|
next_token = logits[:, -1:, :].argmax(dim=-1) |
|
|
input_ids = torch.cat([input_ids, next_token], dim=1) |
|
|
else: |
|
|
past_key_values = None |
|
|
|
|
|
num_small_blocks = block_size // small_block_size |
|
|
|
|
|
for block_idx in range(num_blocks): |
|
|
if stop_token in input_ids[:, original_input_length:]: |
|
|
break |
|
|
prompt_length = input_ids.shape[1] |
|
|
|
|
|
x_init = mask_id * torch.ones((input_ids.shape[0], block_size-prompt_length%block_size), device=self.device, dtype=torch.long) |
|
|
x_init = torch.cat([input_ids, x_init], dim=1) |
|
|
|
|
|
x_t = x_init.clone() |
|
|
block_past_key_values = None |
|
|
while True: |
|
|
if stop_token in x_t[:, prompt_length:]: |
|
|
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1] |
|
|
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0: |
|
|
break |
|
|
mask_idx = (x_t[:, -block_size:] == mask_id) |
|
|
|
|
|
if mask_idx.sum() == 0: |
|
|
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=True, block_size=block_size) |
|
|
logits, past_key_values = output.logits, output.past_key_values |
|
|
next_token = logits[:, -1:, :].argmax(dim=-1) |
|
|
x_t = torch.cat([x_t, next_token], dim=1) |
|
|
break |
|
|
for small_block_idx in range(num_small_blocks): |
|
|
small_block_start_idx = small_block_idx * small_block_size |
|
|
small_block_end_idx = small_block_start_idx + small_block_size |
|
|
|
|
|
start = -block_size + small_block_start_idx |
|
|
end = None if block_size == small_block_end_idx else -block_size + small_block_end_idx |
|
|
while True: |
|
|
mask_idx = (x_t[:, -block_size:] == mask_id) |
|
|
if mask_idx[:, start:end].sum() == 0: |
|
|
break |
|
|
if stop_token in x_t[:, prompt_length:]: |
|
|
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1] |
|
|
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0: |
|
|
break |
|
|
|
|
|
if use_block_cache: |
|
|
if block_past_key_values is None or (x_t[:, -block_size+small_block_start_idx] == mask_id).any(): |
|
|
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True) |
|
|
logits, block_past_key_values = output.logits, output.block_past_key_values |
|
|
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1) |
|
|
logits = logits[:, start:end] |
|
|
else: |
|
|
logits = self.forward(input_ids=x_t[:,start:end], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True, block_past_key_values=block_past_key_values, replace_position=small_block_start_idx).logits |
|
|
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1) |
|
|
else: |
|
|
logits = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False).logits |
|
|
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1) |
|
|
logits = logits[:, start:end] |
|
|
|
|
|
|
|
|
x_1, p_1t = self.sample_with_top_p(logits, top_p=top_p, temperature=temperature) |
|
|
|
|
|
x1_p = torch.squeeze(torch.gather(p_1t, dim=-1, index=torch.unsqueeze(x_1, -1)), -1) |
|
|
x1_p = torch.where(mask_idx[:, start:end], x1_p, -torch.inf) |
|
|
|
|
|
unmask_idx = (x1_p > threshold) |
|
|
max_prob_idx = x1_p.argmax(dim=-1) |
|
|
unmask_idx[torch.arange(x_1.shape[0]), max_prob_idx] = True |
|
|
unmask_idx = unmask_idx & mask_idx[:, start:end] |
|
|
|
|
|
x_t[:, start:end][unmask_idx] = x_1[unmask_idx] |
|
|
|
|
|
input_ids = x_t |
|
|
|
|
|
if stop_token in input_ids[:, original_input_length:]: |
|
|
stop_token_idx = (input_ids[:, original_input_length:] == stop_token).nonzero()[0][1] |
|
|
input_ids = input_ids[:, :stop_token_idx+original_input_length+1] |
|
|
return input_ids |
|
|
|
|
|
def sample_with_top_p(self, logits, top_p=0.95, temperature=1.0): |
|
|
|
|
|
if temperature > 0: |
|
|
scaled_logits = logits / temperature |
|
|
else: |
|
|
p_1t = torch.softmax(logits, dim=-1) |
|
|
x_1 = p_1t.argmax(dim=-1) |
|
|
return x_1, p_1t |
|
|
|
|
|
probs = F.softmax(scaled_logits, dim=-1) |
|
|
|
|
|
sorted_probs, sorted_indices = torch.sort(probs, descending=True) |
|
|
cumulative_probs = torch.cumsum(sorted_probs, dim=-1) |
|
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
|
|
indices_to_remove = torch.zeros_like(probs, dtype=torch.bool).scatter_( |
|
|
dim=-1, index=sorted_indices, src=sorted_indices_to_remove |
|
|
) |
|
|
|
|
|
probs[indices_to_remove] = 0 |
|
|
|
|
|
|
|
|
|
|
|
probs_sum = torch.sum(probs, dim=-1, keepdim=True) |
|
|
normalized_probs = probs / probs_sum |
|
|
|
|
|
p_1t = normalized_probs |
|
|
x_1 = torch.multinomial(p_1t[0], num_samples=1).unsqueeze(0).squeeze(-1) |
|
|
|
|
|
return x_1, p_1t |