Fast_dLLM_v2_7B / modeling.py
Chengyue Wu
update
200e3ef
from typing import Callable, Optional, Union
from dataclasses import dataclass
import torch
from torch import nn
import torch.nn.functional as F
from functools import partial
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import auto_docstring, can_return_tuple, logging
from .configuration import Fast_dLLM_QwenConfig
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
from einops import rearrange, repeat
logger = logging.get_logger(__name__)
@dataclass
class CausalLMOutputWithPastAndBlockCache(CausalLMOutputWithPast):
block_past_key_values: Optional[Cache] = None
@dataclass
class BaseModelOutputWithPastAndBlockCache(BaseModelOutputWithPast):
block_past_key_values: Optional[Cache] = None
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
def fused_flex_attention(q, k, v, mask=None):
return flex_attention(q, k, v, block_mask=mask, enable_gqa=True)
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
"""
Constructs the specialized block diffusion attention mask for training
composed of three masks:
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
- **Block Causal Mask (M_BC)**: Attention to update x0
Args:
b, h: Batch and head indices (ignored for mask logic).
q_idx, kv_idx: Query and Key indices.
seq_len: Total sequence length.
block_size: Defines the block structure.
Returns:
A boolean attention mask.
"""
# Indicate whether token belongs to xt or x0
x0_flag_q = (q_idx >= n)
x0_flag_kv = (kv_idx >= n)
# Compute block indices
block_q = torch.where(x0_flag_q == 1,
(q_idx - n) // block_size,
q_idx // block_size)
block_kv = torch.where(x0_flag_kv == 1,
(kv_idx - n) // block_size,
kv_idx // block_size)
# **1. Block Diagonal Mask (M_BD) **
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
# **2. Offset Block-Causal Mask (M_OBC) **
offset_block_causal = (
(block_q > block_kv)
& (x0_flag_kv == 1)
& (x0_flag_q == 0)
)
# **3. Block-Causal Mask (M_BC) **
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
# **4. Combine Masks **
return block_diagonal | offset_block_causal | block_causal
def eval_block_diff_mask(q_idx, kv_idx, block_size=None):
# Compute block indices
block_q = q_idx // block_size
block_kv = kv_idx // block_size
return block_q >= block_kv
class Fast_dLLM_QwenMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Fast_dLLM_QwenAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
update_past_key_values: Optional[bool] = False,
block_past_key_values: Optional[Cache] = None,
replace_position: Optional[int] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if self.training:
#split q into two parts
q_1 = query_states[:,:,:query_states.shape[2]//2]
q_2 = query_states[:,:,query_states.shape[2]//2:]
#split k into two parts
k_1 = key_states[:,:,:key_states.shape[2]//2]
k_2 = key_states[:,:,key_states.shape[2]//2:]
q_1, k_1 = apply_rotary_pos_emb(q_1, k_1, cos, sin)
q_2, k_2 = apply_rotary_pos_emb(q_2, k_2, cos, sin)
query_states = torch.cat((q_1, q_2), dim=-2)
key_states = torch.cat((k_1, k_2), dim=-2)
else:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if block_past_key_values is not None:
if len(block_past_key_values) <= self.layer_idx:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = block_past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
else:
block_cache_key_states = block_past_key_values[self.layer_idx][0]
block_cache_value_states = block_past_key_values[self.layer_idx][1]
block_cache_key_states[:, :, replace_position:replace_position+key_states.shape[2]] = key_states
block_cache_value_states[:, :, replace_position:replace_position+value_states.shape[2]] = value_states
key_states = block_cache_key_states
value_states = block_cache_value_states
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
if update_past_key_values:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
elif len(past_key_value) > self.layer_idx:
key_states = torch.cat((past_key_value[self.layer_idx][0], key_states), dim=-2)
value_states = torch.cat((past_key_value[self.layer_idx][1], value_states), dim=-2)
if self.training:
attn_output = fused_flex_attention(query_states, key_states, value_states, mask=attention_mask)
attn_output = attn_output.transpose(1, 2).contiguous()
else:
attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
is_causal=False,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window, # main diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
@use_kernel_forward_from_hub("RMSNorm")
class Fast_dLLM_QwenRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Fast_dLLM_QwenRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Fast_dLLM_QwenDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Fast_dLLM_QwenAttention(config=config, layer_idx=layer_idx)
self.mlp = Fast_dLLM_QwenMLP(config)
self.input_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attention_type = config.layer_types[layer_idx]
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
update_past_key_values: Optional[bool] = False,
use_block_cache: Optional[bool] = False,
block_past_key_values: Optional[Cache] = None,
replace_position: Optional[int] = None,
**kwargs
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
update_past_key_values=update_past_key_values,
use_block_cache=use_block_cache,
block_past_key_values=block_past_key_values,
replace_position=replace_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Fast_dLLM_QwenPreTrainedModel(PreTrainedModel):
config_class = Fast_dLLM_QwenConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Fast_dLLM_QwenDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": Fast_dLLM_QwenDecoderLayer,
"attentions": Fast_dLLM_QwenAttention,
}
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, Fast_dLLM_QwenRMSNorm):
module.weight.data.fill_(1.0)
class Fast_dLLM_QwenRotaryEmbedding(nn.Module):
def __init__(self, config: Fast_dLLM_QwenConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class Fast_dLLM_QwenModel(Fast_dLLM_QwenPreTrainedModel):
def __init__(self, config: Fast_dLLM_QwenConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.bd_size = config.bd_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Fast_dLLM_QwenDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Fast_dLLM_QwenRotaryEmbedding(config=config)
self.gradient_checkpointing = True
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def eval_mask(self, seqlen, block_size, cache_seq_len):
q_indices = torch.arange(seqlen) + cache_seq_len
k_indices = torch.arange(seqlen + cache_seq_len)
mask = eval_block_diff_mask(
q_idx=q_indices[:, None],
kv_idx=k_indices[None, :],
block_size=block_size
)
return mask
def gen_mask(self, seqlen, block_size, B, H):
mask = create_block_mask(
partial(block_diff_mask, block_size=block_size, n=seqlen),
B=B, H=H, Q_LEN=seqlen*2, KV_LEN=seqlen*2)
return mask
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
update_past_key_values: Optional[bool] = False,
block_size: Optional[int] = 32,
use_block_cache: Optional[bool] = False,
block_past_key_values: Optional[Cache] = None,
replace_position: Optional[int] = None,
**kwargs
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if use_block_cache and block_past_key_values is None:
block_past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
if self.training:
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1]//2, device=inputs_embeds.device
)
else:
if use_block_cache:
block_start_position = past_seen_tokens+replace_position if replace_position is not None else past_seen_tokens
cache_position = torch.arange(
block_start_position, block_start_position + inputs_embeds.shape[1], device=inputs_embeds.device
)
else:
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1] if not self.training else inputs_embeds.shape[1]//2, device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
if self.training:
attention_mask = self.gen_mask(labels.shape[1], self.bd_size, labels.shape[0], self.config.num_attention_heads).to(device=inputs_embeds.device)
else:
if use_block_cache and block_past_key_values.get_seq_length() != 0:
attention_mask = None
else:
attention_mask = self.eval_mask(input_ids.shape[1], block_size, past_key_values.get_seq_length() if past_key_values is not None else 0).to(device=inputs_embeds.device)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
update_past_key_values=update_past_key_values,
use_block_cache=use_block_cache,
block_past_key_values=block_past_key_values,
replace_position=replace_position,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPastAndBlockCache(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
block_past_key_values=block_past_key_values if use_block_cache else None,
)
class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = Fast_dLLM_QwenModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
update_past_key_values: Optional[bool] = False,
block_size: Optional[int] = 32,
use_block_cache: Optional[bool] = False,
block_past_key_values: Optional[Cache] = None,
replace_position: Optional[int] = None,
mask_id: Optional[int] = 151665,
**kwargs
) -> CausalLMOutputWithPastAndBlockCache:
if self.training:
original_labels = labels.clone()
original_input_ids = input_ids.clone()
noisy_input_ids = input_ids.clone()
input_ids = input_ids.reshape(input_ids.shape[0] * input_ids.shape[1] // self.model.bd_size, self.model.bd_size)
b, l = input_ids.shape
t = torch.rand((b,), device=input_ids.device)
eps=1e-3
p_mask = (1 - eps) * t + eps
p_mask = p_mask[:, None].repeat(1, l)
mask_indices = torch.rand((b, l), device=input_ids.device) < p_mask
x_t = torch.where(mask_indices, mask_id, input_ids).reshape(labels.shape)
noisy_input_ids[labels != -100] = x_t[labels != -100]
mask = (noisy_input_ids != mask_id)
labels[mask] = -100
input_ids = torch.cat([noisy_input_ids, input_ids.reshape(labels.shape)], dim=1)
complementary_noisy_input_ids = original_input_ids.clone()
complementary_labels = original_labels.clone()
complementary_input_ids = original_input_ids.reshape(original_input_ids.shape[0] * original_input_ids.shape[1] // self.model.bd_size, self.model.bd_size)
complementary_mask_indices = ~mask_indices
complementary_x_t = torch.where(complementary_mask_indices, mask_id, complementary_input_ids).reshape(labels.shape)
complementary_noisy_input_ids[complementary_labels != -100] = complementary_x_t[complementary_labels != -100]
complementary_mask = (complementary_noisy_input_ids != mask_id)
complementary_labels[complementary_mask] = -100
complementary_input_ids = torch.cat([complementary_noisy_input_ids, complementary_input_ids.reshape(complementary_labels.shape)], dim=1)
input_ids = torch.cat([input_ids, complementary_input_ids], dim=0)
labels = torch.cat([labels, complementary_labels], dim=0)
outputs: BaseModelOutputWithPastAndBlockCache = self.model(
input_ids=input_ids,
labels=labels,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
update_past_key_values=update_past_key_values,
block_size=block_size,
use_block_cache=use_block_cache,
block_past_key_values=block_past_key_values,
replace_position=replace_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
if self.training:
hidden_states = hidden_states[:, :hidden_states.shape[1]//2, :]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPastAndBlockCache(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
block_past_key_values=outputs.block_past_key_values,
)
@torch.no_grad()
def generate(
self,
input_ids,
max_new_tokens,
mask_id=151665,
threshold=1,
small_block_size=8,
block_size=32,
stop_token=151645,
stopping_criteria=None,
top_p=0.95,
temperature=0,
use_block_cache=False,
**kwargs
):
num_blocks = max_new_tokens // block_size
original_input_length = input_ids.shape[1]
if input_ids.shape[1] > block_size:
output = self.forward(input_ids=input_ids[:, :(input_ids.shape[1] // block_size * block_size)], use_cache=True, update_past_key_values=True, block_size=block_size)
logits, past_key_values = output.logits, output.past_key_values
if input_ids.shape[1] % block_size == 0:
next_token = logits[:, -1:, :].argmax(dim=-1)
input_ids = torch.cat([input_ids, next_token], dim=1)
else:
past_key_values = None
num_small_blocks = block_size // small_block_size
for block_idx in range(num_blocks):
if stop_token in input_ids[:, original_input_length:]:
break
prompt_length = input_ids.shape[1]
# Initialize x_init with mask_id
x_init = mask_id * torch.ones((input_ids.shape[0], block_size-prompt_length%block_size), device=self.device, dtype=torch.long)
x_init = torch.cat([input_ids, x_init], dim=1)
x_t = x_init.clone()
block_past_key_values = None
while True:
if stop_token in x_t[:, prompt_length:]:
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
break
mask_idx = (x_t[:, -block_size:] == mask_id)
# Decode a complete block, update cache, and generate the next token
if mask_idx.sum() == 0:
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=True, block_size=block_size)
logits, past_key_values = output.logits, output.past_key_values
next_token = logits[:, -1:, :].argmax(dim=-1)
x_t = torch.cat([x_t, next_token], dim=1)
break
for small_block_idx in range(num_small_blocks):
small_block_start_idx = small_block_idx * small_block_size
small_block_end_idx = small_block_start_idx + small_block_size
start = -block_size + small_block_start_idx
end = None if block_size == small_block_end_idx else -block_size + small_block_end_idx
while True:
mask_idx = (x_t[:, -block_size:] == mask_id)
if mask_idx[:, start:end].sum() == 0:
break
if stop_token in x_t[:, prompt_length:]:
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
break
if use_block_cache:
if block_past_key_values is None or (x_t[:, -block_size+small_block_start_idx] == mask_id).any():
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True)
logits, block_past_key_values = output.logits, output.block_past_key_values
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
logits = logits[:, start:end]
else:
logits = self.forward(input_ids=x_t[:,start:end], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True, block_past_key_values=block_past_key_values, replace_position=small_block_start_idx).logits
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
else:
logits = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False).logits
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
logits = logits[:, start:end]
x_1, p_1t = self.sample_with_top_p(logits, top_p=top_p, temperature=temperature)
# Select tokens with probability greater than threshold from p_1t
x1_p = torch.squeeze(torch.gather(p_1t, dim=-1, index=torch.unsqueeze(x_1, -1)), -1)
x1_p = torch.where(mask_idx[:, start:end], x1_p, -torch.inf)
unmask_idx = (x1_p > threshold)
max_prob_idx = x1_p.argmax(dim=-1)
unmask_idx[torch.arange(x_1.shape[0]), max_prob_idx] = True
unmask_idx = unmask_idx & mask_idx[:, start:end]
x_t[:, start:end][unmask_idx] = x_1[unmask_idx]
input_ids = x_t
# Truncate stop_token
if stop_token in input_ids[:, original_input_length:]:
stop_token_idx = (input_ids[:, original_input_length:] == stop_token).nonzero()[0][1]
input_ids = input_ids[:, :stop_token_idx+original_input_length+1]
return input_ids
def sample_with_top_p(self, logits, top_p=0.95, temperature=1.0):
# Calculate probabilities
if temperature > 0:
scaled_logits = logits / temperature
else:
p_1t = torch.softmax(logits, dim=-1)
x_1 = p_1t.argmax(dim=-1)
return x_1, p_1t
probs = F.softmax(scaled_logits, dim=-1)
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = torch.zeros_like(probs, dtype=torch.bool).scatter_(
dim=-1, index=sorted_indices, src=sorted_indices_to_remove
)
probs[indices_to_remove] = 0
# Renormalize so that the probabilities of remaining tokens sum to 1
# Add a small epsilon value to prevent division by zero
probs_sum = torch.sum(probs, dim=-1, keepdim=True)
normalized_probs = probs / probs_sum
p_1t = normalized_probs
x_1 = torch.multinomial(p_1t[0], num_samples=1).unsqueeze(0).squeeze(-1)
return x_1, p_1t