Update README.md
#1
by
FlipFlopsNSocks
- opened
README.md
CHANGED
|
@@ -87,6 +87,104 @@ model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finet
|
|
| 87 |
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
| 88 |
classifier("Hello I'm Omar and I live in Zürich.")
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
[{'end': 14,
|
| 91 |
'entity': 'I-PER',
|
| 92 |
'index': 5,
|
|
|
|
| 87 |
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
| 88 |
classifier("Hello I'm Omar and I live in Zürich.")
|
| 89 |
|
| 90 |
+
[{'end': 14,
|
| 91 |
+
'entity': 'I-PER',
|
| 92 |
+
'index': 5,
|
| 93 |
+
'score': 0.9999175,
|
| 94 |
+
'start': 10,
|
| 95 |
+
'word': '▁Omar'},
|
| 96 |
+
{'end': 35,
|
| 97 |
+
'entity': 'I-LOC',
|
| 98 |
+
'index': 10,
|
| 99 |
+
'score': 0.9999906,
|
| 100 |
+
'start': 29,
|
| 101 |
+
'word': '▁Zürich'}]
|
| 102 |
+
from transformers import pipeline
|
| 103 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 104 |
+
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 105 |
+
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
| 106 |
+
classifier("Alya told Jasmine that Andrew could pay with cash..")
|
| 107 |
+
[{'end': 2,
|
| 108 |
+
'entity': 'I-PER',
|
| 109 |
+
'index': 1,
|
| 110 |
+
'score': 0.9997861,
|
| 111 |
+
'start': 0,
|
| 112 |
+
'word': '▁Al'},
|
| 113 |
+
{'end': 4,
|
| 114 |
+
'entity': 'I-PER',
|
| 115 |
+
'index': 2,
|
| 116 |
+
'score': 0.9998591,
|
| 117 |
+
'start': 2,
|
| 118 |
+
'word': 'ya'},
|
| 119 |
+
{'end': 16,
|
| 120 |
+
'entity': 'I-PER',
|
| 121 |
+
'index': 4,
|
| 122 |
+
'score': 0.99995816,
|
| 123 |
+
'start': 10,
|
| 124 |
+
'word': '▁Jasmin'},
|
| 125 |
+
{'end': 17,
|
| 126 |
+
'entity': 'I-PER',
|
| 127 |
+
'index': 5,
|
| 128 |
+
'score': 0.9999584,
|
| 129 |
+
'start': 16,
|
| 130 |
+
'word': 'e'},
|
| 131 |
+
{'end': 29,
|
| 132 |
+
'entity': 'I-PER',
|
| 133 |
+
'index': 7,
|
| 134 |
+
'score': 0.99998057,
|
| 135 |
+
'start': 23,
|
| 136 |
+
'word': '▁Andrew'}]
|
| 137 |
+
|
| 138 |
+
Recommendations
|
| 139 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
|
| 140 |
+
|
| 141 |
+
Training
|
| 142 |
+
See the following resources for training data and training procedure details:
|
| 143 |
+
|
| 144 |
+
XLM-RoBERTa-large model card
|
| 145 |
+
CoNLL-2003 data card
|
| 146 |
+
Associated paper
|
| 147 |
+
Evaluation
|
| 148 |
+
See the associated paper for evaluation details.
|
| 149 |
+
|
| 150 |
+
Environmental Impact
|
| 151 |
+
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
|
| 152 |
+
|
| 153 |
+
Hardware Type: 500 32GB Nvidia V100 GPUs (from the associated paper)
|
| 154 |
+
Hours used: More information needed
|
| 155 |
+
Cloud Provider: More information needed
|
| 156 |
+
Compute Region: More information needed
|
| 157 |
+
Carbon Emitted: More information needed
|
| 158 |
+
Technical Specifications
|
| 159 |
+
See the associated paper for further details.
|
| 160 |
+
|
| 161 |
+
Citation
|
| 162 |
+
BibTeX:
|
| 163 |
+
|
| 164 |
+
@article{conneau2019unsupervised,
|
| 165 |
+
title={Unsupervised Cross-lingual Representation Learning at Scale},
|
| 166 |
+
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
|
| 167 |
+
journal={arXiv preprint arXiv:1911.02116},
|
| 168 |
+
year={2019}
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
APA:
|
| 172 |
+
|
| 173 |
+
Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
|
| 174 |
+
Model Card Authors
|
| 175 |
+
This model card was written by the team at Hugging Face.
|
| 176 |
+
|
| 177 |
+
How to Get Started with the Model
|
| 178 |
+
Use the code below to get started with the model. You can use this model directly within a pipeline for NER.
|
| 179 |
+
|
| 180 |
+
Click to expand
|
| 181 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 182 |
+
from transformers import pipeline
|
| 183 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 184 |
+
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 185 |
+
classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
| 186 |
+
classifier("Hello I'm Omar and I live in Zürich.")
|
| 187 |
+
|
| 188 |
[{'end': 14,
|
| 189 |
'entity': 'I-PER',
|
| 190 |
'index': 5,
|