File size: 15,671 Bytes
14e3151 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# *************************************************************************
# This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
# difications”). All Bytedance Inc.'s Modifications are Copyright (2025) B-
# ytedance Inc..
# *************************************************************************
# Adapted from https://github.com/huggingface/transformers/blob/v4.55.4/src/transformers/models/perception_lm/image_processing_perception_lm_fast.py
# Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Image processor class for PerceptionLM."""
import math
from functools import reduce
from typing import Optional, Union
import numpy as np
from transformers.image_processing_utils import BatchFeature
from transformers.image_processing_utils_fast import (
BaseImageProcessorFast,
DefaultFastImageProcessorKwargs,
get_image_size,
group_images_by_shape,
reorder_images,
)
from transformers.image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
PILImageResampling,
)
from transformers.processing_utils import Unpack
from transformers.utils import (
TensorType,
auto_docstring,
is_torch_available,
is_torchvision_available,
)
if is_torch_available():
import torch
if is_torchvision_available():
from torchvision.transforms import functional as F
class PerceptionLMFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
r"""
vision_input_type (`str`, *optional*, defaults to `"thumb+tile"`):
Vision processing strategy. `"thumb+tile"` uses both thumbnails and multiple tiles for
multi-scale processing, otherwise uses single tile for lower memory usage.
tile_size (`int`, *optional*, defaults to `448`):
Height and width dimension (in pixels) of each tile used for image processing.
max_num_tiles (`int`, *optional*, defaults to `36`):
Maximum number of tiles an image can be split into based on its aspect ratio.
"""
vision_input_type: str = "thumb+tile"
tile_size: int = 448
max_num_tiles: int = 36
@auto_docstring
class PerceptionLMImageProcessorFast(BaseImageProcessorFast):
resample = PILImageResampling.BICUBIC
image_mean = IMAGENET_STANDARD_MEAN
image_std = IMAGENET_STANDARD_STD
do_resize = True
do_center_crop = False
do_rescale = True
do_normalize = True
do_convert_rgb = True
size = {"width": 448, "height": 448} # for backward compatibility in tests
valid_kwargs = PerceptionLMFastImageProcessorKwargs
def __init__(self, **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs]) -> None:
super().__init__(**kwargs)
@auto_docstring
def preprocess(
self, images, **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs]
) -> BatchFeature:
return super().preprocess(images, **kwargs)
@staticmethod
def _factors(n: int):
"""Return all factors of a number."""
return set(
reduce(
list.__add__,
([i, n // i] for i in range(1, int(n**0.5) + 1) if n % i == 0),
)
)
def _find_supported_aspect_ratios(self):
"""
This function computes all the allowed aspect ratios for a fixed
number of input chunks. The order of returned items matters for the result of `_fit_image_to_canvas` function.
If tie exists in `_fit_image_to_canvas`, the latter in `_find_supported_aspect_ratios` wins.
For example, with `num_tiles=5`, it will return:
{
0.2: [(1, 5)],
5.0: [(5, 1)],
0.25: [(1, 4)],
1.0: [(2, 2), (1, 1)],
4.0: [(4, 1)],
0.3333333333333333: [(1, 3)],
3.0: [(3, 1)],
0.5: [(1, 2)],
2.0: [(2, 1)]
}
"""
asp_dict = {}
for chunk_size in range(self.max_num_tiles, 0, -1):
_factors = sorted(self._factors(chunk_size))
_asp_ratios = [(x, chunk_size // x) for x in _factors]
for ratio in _asp_ratios:
k = ratio[0] / ratio[1]
if k not in asp_dict:
asp_dict[k] = [ratio]
else:
asp_dict[k].append(ratio)
return asp_dict
def _get_image_height_width(
self, image_width: int, image_height: int, target_width: int, target_height: int
) -> tuple[int, int]:
"""
Given image width, height and target width, height for the canvas, return the dimensions of how the image would be resized
with aspect ratio preservation.
"""
scale = image_width / image_height
if scale > 1.0:
# Width is larger than height
# Rescaling factor is the minimum of the two scaling factors. Else one side would be outside of the canvas.
rescaling_factor = min(
target_width / image_width, target_height / image_height
)
# Set new width to target width and height to the rescaled height.
new_w = rescaling_factor * image_width
new_h = math.floor(new_w / scale)
else:
# Height is larger than width
# Rescaling factor is the minimum of the two scaling factors. Else one side would be outside of the canvas.
rescaling_factor = min(
target_width / image_width, target_height / image_height
)
# Set new height to target height and width to the rescaled width.
new_h = rescaling_factor * image_height
new_w = math.floor(new_h * scale)
return new_w, new_h
def _fit_image_to_canvas(self, img_width: int, img_height: int, tile_size: int):
"""
Given an image width, height and target number of chunks this function will see if the image
can be fit into any of the canvases that can be build from arranging the tiles in a grid.
If the image can be fit onto several canvases, it will return the canvas where the shorter edge
of the image will be largest.
"""
# Initialize the optimal canvas to None. If no canvas is found where image fits, function returns None.
optimal_canvas = None
optimal_image_width_height = None
scale = img_width / img_height
# Gather all potential supported image resolutions and iterate through them to find best match
potential_arrangements = [
item
for sublist in self._find_supported_aspect_ratios().values()
for item in sublist
]
for n_w, n_h in potential_arrangements:
# Compute the canvas size
canvas_width, canvas_height = n_w * tile_size, n_h * tile_size
# Check if image can fit into the canvas without downsampling
if canvas_width >= img_width and canvas_height >= img_height:
# If we did not find a good canvas yet, we will use the current one
if optimal_canvas is None:
# Set optimal canvas and determine the actual image height and width in the canvas with aspect ratio preserving resampling
optimal_canvas = (n_w, n_h)
optimal_image_width_height = self._get_image_height_width(
image_width=img_width,
image_height=img_height,
target_width=n_w * tile_size,
target_height=n_h * tile_size,
)
else:
# If we already found an optimal canvas before, we will check if the shorter edge of the image will be larger than the current optimal canvas.
# This means we can potentially upsample the image resolution which is beneficial to performance.
image_width_height = self._get_image_height_width(
image_width=img_width,
image_height=img_height,
target_width=n_w * tile_size,
target_height=n_h * tile_size,
)
# Llama3V dynamic tiling. Priortize biggest canvas.
if (
scale < 1.0
and (image_width_height[0] >= optimal_image_width_height[0])
) or (
scale >= 1.0
and (image_width_height[1] >= optimal_image_width_height[1])
):
optimal_canvas = (n_w, n_h)
optimal_image_width_height = image_width_height
return optimal_canvas
def _find_closest_aspect_ratio(
self, img_width: int, img_height: int, tile_size: int
) -> tuple:
"""
Given an image width, height and target number of chunks
this function will find the closest supported aspect ratio.
"""
target_aspect_ratio = img_width / img_height
asp_dict = self._find_supported_aspect_ratios()
closest_aspect_ratio = None
if target_aspect_ratio >= 1:
closest_aspect_ratio = min(
[k for k in asp_dict if k <= target_aspect_ratio],
key=lambda x: abs(x - target_aspect_ratio),
)
tiles_given_aspect_ratio = asp_dict[closest_aspect_ratio]
# select largest width
return max(tiles_given_aspect_ratio, key=lambda x: x[0])
else:
closest_aspect_ratio = min(
[k for k in asp_dict if k > target_aspect_ratio],
key=lambda x: abs(1 / x - 1 / target_aspect_ratio),
)
tiles_given_aspect_ratio = asp_dict[closest_aspect_ratio]
# select largest height
return max(tiles_given_aspect_ratio, key=lambda x: x[1])
def _split(self, image: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
# Split image into number of required tiles (width x height)
batch_size, num_channels, height, width = image.size()
image = image.view(
batch_size, num_channels, nch, height // nch, ncw, width // ncw
)
# Permute dimensions to reorder the axes
image = image.permute(0, 2, 4, 1, 3, 5).contiguous()
# Reshape into the desired output shape (batch_size * 4, num_channels, width/2, height/2)
image = image.view(
batch_size, ncw * nch, num_channels, height // nch, width // ncw
)
return image
def resize(
self,
image: np.ndarray,
tile_size: int,
max_num_tiles: int,
resample: PILImageResampling = PILImageResampling.BICUBIC,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
height, width = get_image_size(image, channel_dim=input_data_format)
if max_num_tiles > 1:
aspect_ratio = self._fit_image_to_canvas(
img_width=width, img_height=height, tile_size=tile_size
)
if aspect_ratio is None:
# If we did not find a canvas, we have to find the closest aspect ratio and downsample the image
aspect_ratio = self._find_closest_aspect_ratio(
img_width=width, img_height=height, tile_size=tile_size
)
else:
aspect_ratio = (1, 1)
new_width, new_height = aspect_ratio[0] * tile_size, aspect_ratio[1] * tile_size
image = F.resize(image, (new_height, new_width), interpolation=resample)
return image, aspect_ratio
def _preprocess(
self,
images: list["torch.Tensor"],
do_resize: bool,
do_rescale: Optional[bool],
rescale_factor: Optional[Union[int, float]],
do_normalize: Optional[bool],
image_mean: Optional[Union[float, list[float]]],
image_std: Optional[Union[float, list[float]]],
vision_input_type: str,
tile_size: int,
max_num_tiles: int,
return_tensors: Optional[Union[str, TensorType]],
disable_grouping: bool,
**kwargs: Unpack[PerceptionLMFastImageProcessorKwargs],
) -> BatchFeature:
# Group images by size for batched transformation
resample = kwargs.pop("resample", self.resample)
grouped_images, grouped_images_index = group_images_by_shape(
images, disable_grouping=disable_grouping
)
resized_images_grouped = {}
aspect_ratio = [1, 1]
for shape, stacked_images in grouped_images.items():
if do_resize:
if vision_input_type == "thumb+tile":
thumbnails, _ = self.resize(
stacked_images,
tile_size,
max_num_tiles=1,
resample=resample,
)
images_for_tiling, (tiles_w, tiles_h) = self.resize(
stacked_images,
tile_size,
max_num_tiles=max_num_tiles,
resample=resample,
)
image_tiles = self._split(images_for_tiling, tiles_w, tiles_h)
stacked_images = torch.cat(
[thumbnails.unsqueeze(1), image_tiles], dim=1
)
aspect_ratio = [tiles_w, tiles_h]
else: # vanilla single tile for low memory devices
stacked_images, _ = self.resize(
stacked_images,
tile_size,
max_num_tiles=1,
resample=resample,
)
resized_images_grouped[shape] = stacked_images
resized_images = reorder_images(resized_images_grouped, grouped_images_index)
grouped_images, grouped_images_index = group_images_by_shape(
resized_images, disable_grouping=disable_grouping
)
processed_images_grouped = {}
for shape, stacked_images in grouped_images.items():
# Fused rescale and normalize
stacked_images = self.rescale_and_normalize(
stacked_images,
do_rescale,
rescale_factor,
do_normalize,
image_mean,
image_std,
)
processed_images_grouped[shape] = stacked_images
processed_images = reorder_images(
processed_images_grouped, grouped_images_index
)
processed_images = [
p[None] if p.ndim == 3 else p for p in processed_images
] # add tiles dimension if needed
processed_images = (
torch.stack(processed_images, dim=0) if return_tensors else processed_images
)
return BatchFeature(
data={"pixel_values": processed_images, "aspect_ratio": aspect_ratio},
tensor_type=return_tensors,
)
__all__ = ["PerceptionLMImageProcessorFast"]
|