muril-base-cased-finetuned-non-code-mixed-DS

This model is a fine-tuned version of google/muril-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2867
  • Accuracy: 0.6214
  • Precision: 0.6081
  • Recall: 0.6009
  • F1: 0.6034

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 43
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0861 2.0 463 1.0531 0.3506 0.1169 0.3333 0.1731
0.99 3.99 926 0.9271 0.5836 0.4310 0.5200 0.4502
0.8759 5.99 1389 0.9142 0.5965 0.5788 0.5907 0.5802
0.7726 7.98 1852 0.8726 0.6095 0.6079 0.6078 0.6027
0.6659 9.98 2315 0.9145 0.6246 0.6139 0.6174 0.6140
0.5727 11.97 2778 0.9606 0.6311 0.6180 0.6109 0.6133
0.4889 13.97 3241 1.0342 0.6170 0.6059 0.6054 0.6045
0.4267 15.97 3704 1.0539 0.6170 0.6089 0.6081 0.6066
0.3751 17.96 4167 1.1740 0.6343 0.6255 0.6074 0.6112
0.3402 19.96 4630 1.2021 0.6192 0.6078 0.6013 0.6031
0.318 21.95 5093 1.2875 0.6181 0.6007 0.5946 0.5965
0.2977 23.95 5556 1.2867 0.6214 0.6081 0.6009 0.6034

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.10.1+cu111
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results