distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5230
- Accuracy: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.9647 | 1.0 | 113 | 1.8929 | 0.48 |
| 1.1905 | 2.0 | 226 | 1.2570 | 0.67 |
| 0.965 | 3.0 | 339 | 0.9944 | 0.73 |
| 0.7124 | 4.0 | 452 | 0.7843 | 0.78 |
| 0.5833 | 5.0 | 565 | 0.6935 | 0.82 |
| 0.4272 | 6.0 | 678 | 0.5472 | 0.84 |
| 0.2811 | 7.0 | 791 | 0.5054 | 0.85 |
| 0.194 | 8.0 | 904 | 0.5465 | 0.86 |
| 0.2246 | 9.0 | 1017 | 0.5372 | 0.86 |
| 0.1303 | 10.0 | 1130 | 0.5230 | 0.87 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 3.0.0
- Tokenizers 0.22.1
- Downloads last month
- 153
Model tree for Ihssane123/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert