results1

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0207
  • Accuracy: 0.9960
  • Precision: 0.9960
  • Recall: 0.9960
  • F1: 0.9960
  • Roc Auc: 0.9998

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
0.0672 0.2202 500 0.0532 0.9832 0.9833 0.9832 0.9832 0.9985
0.0369 0.4403 1000 0.0380 0.9886 0.9886 0.9886 0.9886 0.9992
0.0347 0.6605 1500 0.0298 0.9910 0.9910 0.9910 0.9910 0.9995
0.0382 0.8807 2000 0.0265 0.9922 0.9922 0.9922 0.9922 0.9995
0.0209 1.1008 2500 0.0228 0.9942 0.9942 0.9942 0.9942 0.9997
0.0558 1.3210 3000 0.0245 0.9947 0.9947 0.9947 0.9947 0.9997
0.0184 1.5412 3500 0.0299 0.9931 0.9932 0.9931 0.9931 0.9997
0.0021 1.7613 4000 0.0215 0.9949 0.9949 0.9949 0.9949 0.9998
0.0296 1.9815 4500 0.0250 0.9936 0.9936 0.9936 0.9936 0.9998
0.0012 2.2017 5000 0.0211 0.9955 0.9955 0.9955 0.9955 0.9998
0.0078 2.4218 5500 0.0212 0.9961 0.9961 0.9961 0.9961 0.9998
0.0009 2.6420 6000 0.0239 0.9952 0.9952 0.9952 0.9952 0.9998
0.0105 2.8622 6500 0.0209 0.9956 0.9956 0.9956 0.9956 0.9998

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.6.0+cu124
  • Datasets 4.4.1
  • Tokenizers 0.21.2
Downloads last month
14
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Kimata/results1

Finetuned
(2054)
this model

Evaluation results