Magpie Open Recipes
					Collection
				
Open-aligned models using Magpie datasets.
					β’ 
				11 items
				β’ 
				Updated
					
				β’
					
					1
Project Web: https://magpie-align.github.io/
Arxiv Technical Report: https://arxiv.org/abs/2406.08464
Codes: https://github.com/magpie-align/magpie
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on
It achieves performance comparable with the official Llama-3.1-8B-Instruct Model with SFT only!
License: Please follow Meta Llama 3 Community License (Data) and Meta Llama 3.1 Community License (Model).
Conversation Template: Please use Llama 3 official chat template for the best performance.
Questions? Please contact Zhangchen by email.
If you find the model, data, or code useful, please cite our paper:
@article{xu2024magpie,
    title={Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing}, 
    author={Zhangchen Xu and Fengqing Jiang and Luyao Niu and Yuntian Deng and Radha Poovendran and Yejin Choi and Bill Yuchen Lin},
    year={2024},
    eprint={2406.08464},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 0.7863 | 0.0024 | 1 | 0.7710 | 
| 0.5422 | 0.2007 | 85 | 0.4937 | 
| 0.476 | 0.4014 | 170 | 0.4382 | 
| 0.4594 | 0.6021 | 255 | 0.4174 | 
| 0.4383 | 0.8028 | 340 | 0.4057 | 
| 0.4397 | 1.0035 | 425 | 0.3978 | 
| 0.3927 | 1.1845 | 510 | 0.3956 | 
| 0.3895 | 1.3852 | 595 | 0.3934 | 
| 0.3832 | 1.5859 | 680 | 0.3925 | 
| 0.3957 | 1.7866 | 765 | 0.3924 | 
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3.1-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
  - path: Magpie-Align/Magpie-Reasoning-150K
    type: sharegpt
    conversation: llama3
  - path: Magpie-Align/Magpie-Pro-MT-300K-v0.1
    type: sharegpt
    conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: /data/axolotl_out/Llama-3.1-8B-Mix-SFT
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Llama-3.1-8B-Mix-SFT
wandb_log_model:
hub_model_id: Magpie-Align/Llama-3.1-8B-Magpie-Align-SFT-v0.1
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>
Base model
meta-llama/Llama-3.1-8B