Add abstract to model card
#3
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
---
|
| 2 |
-
license: mit
|
| 3 |
-
pipeline_tag: image-text-to-text
|
| 4 |
-
library_name: transformers
|
| 5 |
base_model:
|
| 6 |
-
|
| 7 |
-
base_model_relation: finetune
|
| 8 |
datasets:
|
| 9 |
-
|
| 10 |
language:
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
tags:
|
| 13 |
-
|
| 14 |
-
|
|
|
|
| 15 |
---
|
| 16 |
|
| 17 |
# InternVL2_5-26B-MPO
|
|
@@ -24,6 +24,10 @@ tags:
|
|
| 24 |
<img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
|
| 25 |
</div>
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
## Introduction
|
| 28 |
|
| 29 |
We introduce InternVL2.5-MPO, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance. This series builds upon InternVL2.5 and Mixed Preference Optimization.
|
|
@@ -113,7 +117,7 @@ Additionally, the BCO loss is employed as the quality loss, which helps the mode
|
|
| 113 |
The loss function is defined as:
|
| 114 |
|
| 115 |
$$
|
| 116 |
-
\mathcal{L}_{\text{q}}=\mathcal{L}_{\text{q}}^+ + \mathcal{L}_{\text{q}}
|
| 117 |
$$
|
| 118 |
|
| 119 |
where \\(\mathcal{L}_{\text{q}}^{+}\\) and \\(\mathcal{L}_{\text{q}}^{+}\\) represent the loss for chosen and rejected responses, respectively.
|
|
@@ -344,40 +348,50 @@ generation_config = dict(max_new_tokens=1024, do_sample=True)
|
|
| 344 |
# pure-text conversation (纯文本对话)
|
| 345 |
question = 'Hello, who are you?'
|
| 346 |
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
| 347 |
-
print(f'User: {question}
|
|
|
|
| 348 |
|
| 349 |
question = 'Can you tell me a story?'
|
| 350 |
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
| 351 |
-
print(f'User: {question}
|
|
|
|
| 352 |
|
| 353 |
# single-image single-round conversation (单图单轮对话)
|
| 354 |
-
question = '<image
|
|
|
|
| 355 |
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
| 356 |
-
print(f'User: {question}
|
|
|
|
| 357 |
|
| 358 |
# single-image multi-round conversation (单图多轮对话)
|
| 359 |
-
question = '<image
|
|
|
|
| 360 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
| 361 |
-
print(f'User: {question}
|
|
|
|
| 362 |
|
| 363 |
question = 'Please write a poem according to the image.'
|
| 364 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
| 365 |
-
print(f'User: {question}
|
|
|
|
| 366 |
|
| 367 |
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
| 368 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 369 |
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 370 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 371 |
|
| 372 |
-
question = '<image
|
|
|
|
| 373 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 374 |
history=None, return_history=True)
|
| 375 |
-
print(f'User: {question}
|
|
|
|
| 376 |
|
| 377 |
question = 'What are the similarities and differences between these two images.'
|
| 378 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 379 |
history=history, return_history=True)
|
| 380 |
-
print(f'User: {question}
|
|
|
|
| 381 |
|
| 382 |
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
| 383 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
|
@@ -385,17 +399,20 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
|
|
| 385 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 386 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 387 |
|
| 388 |
-
question = 'Image-1: <image
|
|
|
|
|
|
|
| 389 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 390 |
num_patches_list=num_patches_list,
|
| 391 |
history=None, return_history=True)
|
| 392 |
-
print(f'User: {question}
|
|
|
|
| 393 |
|
| 394 |
question = 'What are the similarities and differences between these two images.'
|
| 395 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 396 |
-
num_patches_list=num_patches_list,
|
| 397 |
-
|
| 398 |
-
|
| 399 |
|
| 400 |
# batch inference, single image per sample (单图批处理)
|
| 401 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
|
@@ -403,13 +420,15 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
|
|
| 403 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 404 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 405 |
|
| 406 |
-
questions = ['<image
|
|
|
|
| 407 |
responses = model.batch_chat(tokenizer, pixel_values,
|
| 408 |
num_patches_list=num_patches_list,
|
| 409 |
questions=questions,
|
| 410 |
generation_config=generation_config)
|
| 411 |
for question, response in zip(questions, responses):
|
| 412 |
-
print(f'User: {question}
|
|
|
|
| 413 |
|
| 414 |
# video multi-round conversation (视频多轮对话)
|
| 415 |
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
|
@@ -447,17 +466,24 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
|
|
| 447 |
video_path = './examples/red-panda.mp4'
|
| 448 |
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
| 449 |
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
| 450 |
-
video_prefix = ''.join([f'Frame{i+1}: <image
|
|
|
|
| 451 |
question = video_prefix + 'What is the red panda doing?'
|
| 452 |
-
# Frame1: <image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 454 |
num_patches_list=num_patches_list, history=None, return_history=True)
|
| 455 |
-
print(f'User: {question}
|
|
|
|
| 456 |
|
| 457 |
question = 'Describe this video in detail.'
|
| 458 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 459 |
num_patches_list=num_patches_list, history=history, return_history=True)
|
| 460 |
-
print(f'User: {question}
|
|
|
|
| 461 |
```
|
| 462 |
|
| 463 |
#### Streaming Output
|
|
@@ -539,7 +565,9 @@ image_urls=[
|
|
| 539 |
|
| 540 |
images = [load_image(img_url) for img_url in image_urls]
|
| 541 |
# Numbering images improves multi-image conversations
|
| 542 |
-
response = pipe((f'Image-1: {IMAGE_TOKEN}
|
|
|
|
|
|
|
| 543 |
print(response.text)
|
| 544 |
```
|
| 545 |
|
|
@@ -648,8 +676,12 @@ If you find this project useful in your research, please consider citing:
|
|
| 648 |
@article{chen2024far,
|
| 649 |
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
|
| 650 |
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
|
| 651 |
-
journal={
|
| 652 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 653 |
}
|
| 654 |
@inproceedings{chen2024internvl,
|
| 655 |
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
|
|
@@ -659,3 +691,13 @@ If you find this project useful in your research, please consider citing:
|
|
| 659 |
year={2024}
|
| 660 |
}
|
| 661 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
base_model:
|
| 3 |
+
- OpenGVLab/InternVL2_5-26B
|
|
|
|
| 4 |
datasets:
|
| 5 |
+
- OpenGVLab/MMPR-v1.1
|
| 6 |
language:
|
| 7 |
+
- multilingual
|
| 8 |
+
library_name: transformers
|
| 9 |
+
license: mit
|
| 10 |
+
pipeline_tag: image-text-to-text
|
| 11 |
tags:
|
| 12 |
+
- internvl
|
| 13 |
+
- custom_code
|
| 14 |
+
base_model_relation: finetune
|
| 15 |
---
|
| 16 |
|
| 17 |
# InternVL2_5-26B-MPO
|
|
|
|
| 24 |
<img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
|
| 25 |
</div>
|
| 26 |
|
| 27 |
+
## Abstract
|
| 28 |
+
|
| 29 |
+
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems.
|
| 30 |
+
|
| 31 |
## Introduction
|
| 32 |
|
| 33 |
We introduce InternVL2.5-MPO, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance. This series builds upon InternVL2.5 and Mixed Preference Optimization.
|
|
|
|
| 117 |
The loss function is defined as:
|
| 118 |
|
| 119 |
$$
|
| 120 |
+
\mathcal{L}_{\text{q}}=\mathcal{L}_{\text{q}}^+ + \mathcal{L}_{\text{q}}^-,\
|
| 121 |
$$
|
| 122 |
|
| 123 |
where \\(\mathcal{L}_{\text{q}}^{+}\\) and \\(\mathcal{L}_{\text{q}}^{+}\\) represent the loss for chosen and rejected responses, respectively.
|
|
|
|
| 348 |
# pure-text conversation (纯文本对话)
|
| 349 |
question = 'Hello, who are you?'
|
| 350 |
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
| 351 |
+
print(f'User: {question}
|
| 352 |
+
Assistant: {response}')
|
| 353 |
|
| 354 |
question = 'Can you tell me a story?'
|
| 355 |
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
| 356 |
+
print(f'User: {question}
|
| 357 |
+
Assistant: {response}')
|
| 358 |
|
| 359 |
# single-image single-round conversation (单图单轮对话)
|
| 360 |
+
question = '<image>
|
| 361 |
+
Please describe the image shortly.'
|
| 362 |
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
| 363 |
+
print(f'User: {question}
|
| 364 |
+
Assistant: {response}')
|
| 365 |
|
| 366 |
# single-image multi-round conversation (单图多轮对话)
|
| 367 |
+
question = '<image>
|
| 368 |
+
Please describe the image in detail.'
|
| 369 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
| 370 |
+
print(f'User: {question}
|
| 371 |
+
Assistant: {response}')
|
| 372 |
|
| 373 |
question = 'Please write a poem according to the image.'
|
| 374 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
| 375 |
+
print(f'User: {question}
|
| 376 |
+
Assistant: {response}')
|
| 377 |
|
| 378 |
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
| 379 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 380 |
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 381 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 382 |
|
| 383 |
+
question = '<image>
|
| 384 |
+
Describe the two images in detail.'
|
| 385 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 386 |
history=None, return_history=True)
|
| 387 |
+
print(f'User: {question}
|
| 388 |
+
Assistant: {response}')
|
| 389 |
|
| 390 |
question = 'What are the similarities and differences between these two images.'
|
| 391 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 392 |
history=history, return_history=True)
|
| 393 |
+
print(f'User: {question}
|
| 394 |
+
Assistant: {response}')
|
| 395 |
|
| 396 |
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
| 397 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
|
|
|
| 399 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 400 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 401 |
|
| 402 |
+
question = 'Image-1: <image>
|
| 403 |
+
Image-2: <image>
|
| 404 |
+
Describe the two images in detail.'
|
| 405 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 406 |
num_patches_list=num_patches_list,
|
| 407 |
history=None, return_history=True)
|
| 408 |
+
print(f'User: {question}
|
| 409 |
+
Assistant: {response}')
|
| 410 |
|
| 411 |
question = 'What are the similarities and differences between these two images.'
|
| 412 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 413 |
+
num_patches_list=num_patches_list, history=history, return_history=True)
|
| 414 |
+
print(f'User: {question}
|
| 415 |
+
Assistant: {response}')
|
| 416 |
|
| 417 |
# batch inference, single image per sample (单图批处理)
|
| 418 |
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
|
|
|
| 420 |
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 421 |
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 422 |
|
| 423 |
+
questions = ['<image>
|
| 424 |
+
Describe the image in detail.'] * len(num_patches_list)
|
| 425 |
responses = model.batch_chat(tokenizer, pixel_values,
|
| 426 |
num_patches_list=num_patches_list,
|
| 427 |
questions=questions,
|
| 428 |
generation_config=generation_config)
|
| 429 |
for question, response in zip(questions, responses):
|
| 430 |
+
print(f'User: {question}
|
| 431 |
+
Assistant: {response}')
|
| 432 |
|
| 433 |
# video multi-round conversation (视频多轮对话)
|
| 434 |
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
|
|
|
| 466 |
video_path = './examples/red-panda.mp4'
|
| 467 |
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
| 468 |
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
| 469 |
+
video_prefix = ''.join([f'Frame{i+1}: <image>
|
| 470 |
+
' for i in range(len(num_patches_list))])
|
| 471 |
question = video_prefix + 'What is the red panda doing?'
|
| 472 |
+
# Frame1: <image>
|
| 473 |
+
Frame2: <image>
|
| 474 |
+
...
|
| 475 |
+
Frame8: <image>
|
| 476 |
+
{question}
|
| 477 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 478 |
num_patches_list=num_patches_list, history=None, return_history=True)
|
| 479 |
+
print(f'User: {question}
|
| 480 |
+
Assistant: {response}')
|
| 481 |
|
| 482 |
question = 'Describe this video in detail.'
|
| 483 |
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 484 |
num_patches_list=num_patches_list, history=history, return_history=True)
|
| 485 |
+
print(f'User: {question}
|
| 486 |
+
Assistant: {response}')
|
| 487 |
```
|
| 488 |
|
| 489 |
#### Streaming Output
|
|
|
|
| 565 |
|
| 566 |
images = [load_image(img_url) for img_url in image_urls]
|
| 567 |
# Numbering images improves multi-image conversations
|
| 568 |
+
response = pipe((f'Image-1: {IMAGE_TOKEN}
|
| 569 |
+
Image-2: {IMAGE_TOKEN}
|
| 570 |
+
describe these two images', images))
|
| 571 |
print(response.text)
|
| 572 |
```
|
| 573 |
|
|
|
|
| 676 |
@article{chen2024far,
|
| 677 |
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
|
| 678 |
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
|
| 679 |
+
journal={Science China Information Sciences},
|
| 680 |
+
volume={67},
|
| 681 |
+
number={12},
|
| 682 |
+
pages={220101},
|
| 683 |
+
year={2024},
|
| 684 |
+
publisher={Springer}
|
| 685 |
}
|
| 686 |
@inproceedings{chen2024internvl,
|
| 687 |
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
|
|
|
|
| 691 |
year={2024}
|
| 692 |
}
|
| 693 |
```
|
| 694 |
+
|
| 695 |
+
## Acknowledgement
|
| 696 |
+
|
| 697 |
+
InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
|
| 698 |
+
|
| 699 |
+
______________________________________________________________________
|
| 700 |
+
|
| 701 |
+
Scan the following QR Code, join our WeChat group.
|
| 702 |
+
|
| 703 |
+
<p align="center"><img width="300" alt="image" src="https://github.com/user-attachments/assets/f776df09-ebba-4fd5-80c2-fec4ff1518be"></p>
|