|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
|
|
|
class PaddleOCRVisionConfig(PretrainedConfig): |
|
|
model_type = "paddleocr_vl" |
|
|
base_config_key = "vision_config" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
hidden_size=768, |
|
|
intermediate_size=3072, |
|
|
num_hidden_layers=12, |
|
|
num_attention_heads=12, |
|
|
num_channels=3, |
|
|
image_size=224, |
|
|
patch_size=14, |
|
|
hidden_act="gelu_pytorch_tanh", |
|
|
layer_norm_eps=1e-6, |
|
|
attention_dropout=0.0, |
|
|
spatial_merge_size=2, |
|
|
temporal_patch_size=2, |
|
|
tokens_per_second=2, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.num_channels = num_channels |
|
|
self.patch_size = patch_size |
|
|
self.image_size = image_size |
|
|
self.attention_dropout = attention_dropout |
|
|
self.layer_norm_eps = layer_norm_eps |
|
|
self.hidden_act = hidden_act |
|
|
self.spatial_merge_size = spatial_merge_size |
|
|
self.temporal_patch_size = temporal_patch_size |
|
|
self.tokens_per_second = tokens_per_second |
|
|
|
|
|
|
|
|
|
|
|
class PaddleOCRVLConfig(PretrainedConfig): |
|
|
""" |
|
|
Configuration class. |
|
|
|
|
|
This class stores the configuration of an Ernie model, defining the model architecture. |
|
|
It inherits from PretrainedConfig and can be used to control model outputs. |
|
|
""" |
|
|
|
|
|
model_type = "paddleocr_vl" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
sub_configs = {"vision_config": PaddleOCRVisionConfig} |
|
|
|
|
|
|
|
|
base_model_tp_plan = { |
|
|
"layers.*.self_attn.q_proj": "colwise", |
|
|
"layers.*.self_attn.k_proj": "colwise", |
|
|
"layers.*.self_attn.v_proj": "colwise", |
|
|
"layers.*.self_attn.o_proj": "rowwise", |
|
|
"layers.*.mlp.gate_proj": "colwise", |
|
|
"layers.*.mlp.up_proj": "colwise", |
|
|
"layers.*.mlp.down_proj": "rowwise", |
|
|
} |
|
|
base_model_pp_plan = { |
|
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=32000, |
|
|
hidden_size=768, |
|
|
intermediate_size=11008, |
|
|
max_position_embeddings=32768, |
|
|
num_hidden_layers=2, |
|
|
num_attention_heads=2, |
|
|
image_token_id=101304, |
|
|
video_token_id=101305, |
|
|
vision_start_token_id=101306, |
|
|
rms_norm_eps=1e-6, |
|
|
use_cache=False, |
|
|
use_flash_attention=False, |
|
|
pad_token_id=0, |
|
|
bos_token_id=1, |
|
|
eos_token_id=2, |
|
|
head_dim=128, |
|
|
hidden_act="silu", |
|
|
use_bias=False, |
|
|
rope_theta=10000, |
|
|
weight_share_add_bias=True, |
|
|
ignored_index=-100, |
|
|
attention_probs_dropout_prob=0.0, |
|
|
hidden_dropout_prob=0.0, |
|
|
compression_ratio: float = 1.0, |
|
|
num_key_value_heads=None, |
|
|
max_sequence_length=None, |
|
|
tie_word_embeddings=False, |
|
|
vision_config=None, |
|
|
rope_scaling=None, |
|
|
**kwargs, |
|
|
): |
|
|
""" |
|
|
Initialize configuration with default or specified parameters. |
|
|
|
|
|
Args: |
|
|
vocab_size (int): Size of the vocabulary (number of unique tokens) |
|
|
hidden_size (int): Dimensionality of the encoder layers and the pooler layer |
|
|
intermediate_size (int): Dimensionality of the "intermediate" (feed-forward) layer |
|
|
max_position_embeddings (int): Maximum sequence length the model can handle |
|
|
num_hidden_layers (int): Number of hidden layers in the Transformer encoder |
|
|
num_attention_heads (int): Number of attention heads for each attention layer |
|
|
rms_norm_eps (float): The epsilon used by the RMS normalization layers |
|
|
use_cache (bool): Whether to use caching for faster generation (decoding) |
|
|
use_flash_attention (bool): Whether to use FlashAttention for optimized attention computation |
|
|
pad_token_id (int): Token ID used for padding sequences |
|
|
bos_token_id (int): Token ID used for beginning-of-sequence |
|
|
eos_token_id (int): Token ID used for end-of-sequence |
|
|
use_bias (bool): Whether to use bias terms in linear layers |
|
|
rope_theta (float): The base period of the RoPE embeddings |
|
|
weight_share_add_bias (bool): Whether to share bias weights in certain layers |
|
|
ignored_index (int): Target value that is ignored during loss computation |
|
|
attention_probs_dropout_prob (float): Dropout probability for attention weights |
|
|
hidden_dropout_prob (float): Dropout probability for hidden layers |
|
|
compression_ratio (float): Ratio for KV cache compression (1.0 = no compression) |
|
|
num_key_value_heads (int): Number of key/value heads (for Grouped Query Attention) |
|
|
max_sequence_length (int): Maximum sequence length for positional embeddings |
|
|
**kwargs: Additional keyword arguments passed to parent class |
|
|
""" |
|
|
|
|
|
|
|
|
super().__init__( |
|
|
pad_token_id=pad_token_id, |
|
|
bos_token_id=bos_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
**kwargs, |
|
|
) |
|
|
if isinstance(vision_config, dict): |
|
|
self.vision_config = self.sub_configs["vision_config"](**vision_config) |
|
|
elif vision_config is None: |
|
|
self.vision_config = self.sub_configs["vision_config"]() |
|
|
self.vocab_size = vocab_size |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.use_cache = use_cache |
|
|
self.use_flash_attention = use_flash_attention |
|
|
self.pad_token_id = pad_token_id |
|
|
self.bos_token_id = bos_token_id |
|
|
self.eos_token_id = eos_token_id |
|
|
self.image_token_id = image_token_id |
|
|
self.video_token_id = video_token_id |
|
|
self.vision_start_token_id = vision_start_token_id |
|
|
self.head_dim = head_dim |
|
|
self.hidden_act=hidden_act |
|
|
self.sliding_window = None |
|
|
self.hidden_size = hidden_size |
|
|
self.use_bias = use_bias |
|
|
self.weight_share_add_bias = weight_share_add_bias |
|
|
self.rope_theta = rope_theta |
|
|
self.ignored_index = ignored_index |
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
|
self.compression_ratio = compression_ratio |
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.max_sequence_length = max_sequence_length |
|
|
self.rope_scaling = rope_scaling |
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
|
if self.rope_scaling["type"] == "mrope": |
|
|
self.rope_scaling["type"] = "default" |
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
|
rope_config_validation(self, ignore_keys={"mrope_section"}) |
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) |