DiffICM / 4_ControlModule /3_train_controlnet.py
Qiyp's picture
code of stage1 & 3, remove large files
1633fcc
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from torch.cuda.amp import GradScaler, autocast
from torchvision.utils import make_grid
import importlib
import utils
import logging
import torch.nn as nn
import sys
from typing import Iterable, Optional
import utils
import logging
import torch.distributed as dist
import os
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from pycocotools.coco import COCO
from PIL import Image, ImageDraw, ImageFont
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
from tqdm import tqdm
import matplotlib.pyplot as plt
import torchvision
def get_args_parser():
parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--bce-loss', action='store_true')
parser.add_argument('--unscale-lr', action='store_true')
# Feature extractor parameters
parser.add_argument('--model', default='deit_base_patch16_224', type=str)
parser.add_argument('--target_model', default='deit_base_patch16_224', type=str)
parser.add_argument('--input-size', default=224, type=int, help='images input size')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# CLDM parameters
parser.add_argument('--total_train_steps', default=300000, type=int)
parser.add_argument('--resume_path', default='', help='resume from checkpoint for controlnet')
parser.add_argument('--cldm_learning_rate', default=1e-4, type=float, help='learning rate for controlnet')
parser.add_argument('--sd_locked', default=True, help='whether to lock the sd of controlnet')
parser.add_argument('--only_mid_control', default=False, help='only control the middle layers of controlnet')
parser.add_argument('--cldm_yaml', default='./models/cldm_v15.yaml', help='yaml file for controlnet')
parser.add_argument('--exp_dir', default='./exp', help='experiment directory')
parser.add_argument('--image_floder', default='./data', help='training image floder')
parser.add_argument('--txt_path', default='./data', help='training txt path')
parser.add_argument("--log_every", default=20, type=int, help="log every n steps")
parser.add_argument("--ckpt_every", default=1000, type=int, help="save checkpoint every n steps")
parser.add_argument("--image_every", default=1000, type=int, help="log image every n steps")
parser.add_argument('--controlnet_dir', default='', type=str, help='resume from checkpoint for controlnet')
parser.add_argument('--global_step', default=0, type=int, help='global step')
parser.add_argument('--ddim_steps', default=50, type=int, help='ddim steps')
parser.add_argument('--eta', default=0, type=float, help='ddim eta')
parser.add_argument('--unconditional_guidance_scale', default=1.5, type=float, help='unconditional guidance scale')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=4e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.3, metavar='PCT',
help='Color jitter factor (default: 0.3)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
parser.add_argument('--train-mode', action='store_true')
parser.add_argument('--no-train-mode', action='store_false', dest='train_mode')
parser.set_defaults(train_mode=True)
parser.add_argument('--ThreeAugment', action='store_true') #3augment
parser.add_argument('--src', action='store_true') #simple random crop
# add dataset parameters
parser.add_argument('--global_crops_size', '--img_size', default=224, type=int,
help="this should be equal to image size")
parser.add_argument('--patch_size', default=16, type=int,
help="patch size for vit patch embedding")
# add masking parameter
parser.add_argument('--mask_ratio', default=(0.1, 0.5), type=float, nargs='+',
help="mask ratio can be either a value or a range")
parser.add_argument('--mask_probability', default=0., type=float,
help="how many samples with be applied with masking")
parser.add_argument('--mask_first_n', action='store_true',
help="mask the first n sample to avoid shuffling. Needed for MAE-style encoder")
parser.add_argument('--clone_batch', default=1, type=int,
help="how many times to clone the batch for masking (default: 1, not cloning)")
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Distillation parameters
parser.add_argument('--teacher-model', default='base', type=str)
parser.add_argument('--teacher-path', type=str, default='')
parser.add_argument('--distillation-type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation-alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation-tau', default=1.0, type=float, help="")
parser.add_argument('--lambda_token', type=float, default=1.0)
parser.add_argument('--lambda_fea', type=float, default=1.0)
parser.add_argument('--lambda_patch', type=float, default=1.0)
# * Cosub params
parser.add_argument('--cosub', action='store_true')
# * Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
parser.add_argument('--attn-only', action='store_true')
parser.add_argument('--weight_inherit', default='')
# Dataset parameters
parser.add_argument('--data-path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'IMNET_ibot', 'IMNET_ibot_aug', 'IMNET_ibot_fast_aug', 'INAT', 'INAT19', 'IMNET_L', 'IMNET_L_ibot'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='/data1/qiyp/Proteus-pytorch/pretrain/log/DINOv2_training/log',
type=str, help='saving logging info every 20 iters')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--eval-crop-ratio', default=0.875, type=float, help="Crop ratio for evaluation")
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--distributed', action='store_true', default=False, help='Enabling distributed training')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def setup_logger(log_dir, rank=0):
if rank != 0:
return # 只有主进程(rank 0)配置日志记录器
log_formatter = logging.Formatter("%(asctime)s [%(levelname)-5.5s] %(message)s")
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
log_file_handler = logging.FileHandler(log_dir, encoding='utf-8')
log_file_handler.setFormatter(log_formatter)
root_logger.addHandler(log_file_handler)
log_stream_handler = logging.StreamHandler(sys.stdout)
log_stream_handler.setFormatter(log_formatter)
root_logger.addHandler(log_stream_handler)
logging.info('Logging file is %s' % log_dir)
class CustomCocoDataset(Dataset):
def __init__(self, img_folder, common_transform=None):
self.img_folder = img_folder
self.ids = [os.path.splitext(f)[0] for f in os.listdir(img_folder) if f.endswith(('.jpg', '.jpeg', '.png'))]
self.common_transform = common_transform
def __len__(self):
return len(self.ids)
def __getitem__(self, index):
img_id = self.ids[index]
img_path = os.path.join(self.img_folder, img_id + '.jpg')
image = Image.open(img_path).convert('RGB')
# Perform a random crop
i, j, h, w = transforms.RandomResizedCrop.get_params(
image, scale=(0.95, 1.0), ratio=(1.0, 1.0)) # Ensure the same crop for both images
cropped_image = transforms.functional.crop(image, i, j, h, w)
# Resize to different resolutions
jpg_image = transforms.functional.resize(cropped_image, 512, interpolation=transforms.InterpolationMode.BICUBIC)
hint_image = transforms.functional.resize(cropped_image, 448, interpolation=transforms.InterpolationMode.BICUBIC)
# Apply common transformations
if self.common_transform is not None:
jpg_image = self.common_transform(jpg_image)
hint_image = self.common_transform(hint_image)
# Set captions to an empty string
combined_caption = ""
return dict(jpg=jpg_image, txt=combined_caption, hint=hint_image)
def show_params(model, show_learnable=True):
params = set()
for name, param in model.named_parameters():
if param.requires_grad == show_learnable:
params.add(name)
if show_learnable:
logging.info("Parameters to be updated: ")
else:
logging.info("Parameters that are not being updated: ")
for each in params:
logging.info('\t{}'.format(str(each)))
logging.info('\n')
def log_txt_as_img(wh, xc):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
# font = ImageFont.truetype('font/DejaVuSans.ttf', size=size)
font = ImageFont.load_default()
nc = int(40 * (wh[0] / 256))
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def visualize_features(features):
# Assuming features are of shape (batch_size, num_features, height, width)
batch_size, num_features, height, width = features.shape
# Normalize the feature maps to the range [0, 1]
vis = features.mean(dim=1, keepdim=True)
vis = vis - vis.min()
vis = vis / vis.max()
# Squeeze the channel dimension
vis = vis.squeeze(1).cpu().detach().numpy()
# Apply a colormap (e.g., viridis) to convert it to RGB
vis_colored = np.zeros((batch_size, height, width, 3))
for i in range(batch_size):
vis_colored[i] = plt.cm.viridis(vis[i])[:, :, :3] # Drop the alpha channel
# Convert vis_colored to a tensor and save using torchvision
vis_colored = torch.tensor(vis_colored).permute(0, 3, 1, 2) # Convert to (batch, channels, height, width)
return vis_colored
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# 获取当前进程的 rank
rank = dist.get_rank() if dist.is_initialized() else 0
# set up logger
os.makedirs(args.log_dir, exist_ok=True)
setup_logger(args.log_dir + '/' + time.strftime('%Y%m%d_%H%M%S') + '.log', rank)
logging.info('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
logging.info("{}".format(args).replace(', ', ',\n') + '\n')
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
# Setup an experiment folder
exp_dir = args.exp_dir
os.makedirs(exp_dir, exist_ok=True)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
os.makedirs(ckpt_dir, exist_ok=True)
logging.info(f"Experiment directory created at {exp_dir}")
# Create Dataset
common_transforms = transforms.Compose([
transforms.ToTensor()
])
# txt_path = args.txt_path
img_folder = args.image_floder
# dataset = CustomCocoDataset(txt_path, img_folder, common_transform=common_transforms)
dataset = CustomCocoDataset(img_folder, common_transform=common_transforms)
logging.info(f"Loaded train dataset with {len(dataset)} samples")
# Distributed Sampler
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.RandomSampler(dataset)
logging.info("Sampler_train = %s" % str(sampler_train))
# Dataloader
dataloader = DataLoader(
dataset, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers,
pin_memory=args.pin_mem, drop_last=True)
logging.info('Dataloader created')
# ========== create IF model ========== #
logging.info(f"# ===== Creating Feature Extractor: {args.model} ===== #")
# print(f"Creating model: {args.model}") # models_proteus_dinov2
meta_arch_module = importlib.import_module(args.model)
MetaArch = meta_arch_module.MetaArch
model = MetaArch(args)
logging.info("Model = %s" % str(model))
if args.finetune:
checkpoint = torch.load(args.finetune, map_location='cpu')
if 'state_dict' in checkpoint:
pretrained_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
pretrained_dict = checkpoint['model']
else:
pretrained_dict = checkpoint
missing_keys, unexpected_keys = model.load_state_dict(pretrained_dict, False)
logging.info('Finetuning from %s' % args.finetune)
logging.info('missing_keys: %s' % str(missing_keys))
logging.info('unexpected_keys: %s' % str(unexpected_keys))
if args.attn_only:
for name_p,p in model.named_parameters():
if '.attn.' in name_p:
p.requires_grad = True
else:
p.requires_grad = False
try:
model.head.weight.requires_grad = True
model.head.bias.requires_grad = True
except:
model.fc.weight.requires_grad = True
model.fc.bias.requires_grad = True
try:
model.pos_embed.requires_grad = True
except:
print('no position encoding')
try:
for p in model.patch_embed.parameters():
p.requires_grad = False
except:
print('no patch embed')
model.to(device)
model.eval()
# ========== create cldm ========== #
logging.info(f"# ===== Creating ControlNet: ===== #")
cldm = create_model(args.cldm_yaml).cpu()
cldm.load_state_dict(load_state_dict(args.resume_path, location='cpu'))
cldm.learning_rate = args.cldm_learning_rate
cldm.sd_locked = args.sd_locked
cldm.only_mid_control = args.only_mid_control
cldm = cldm.to(device)
if args.controlnet_dir:
logging.info(f"Resuming controlnet from {args.controlnet_dir}")
checkpoint = torch.load(args.controlnet_dir, map_location='cpu')
cldm_state_dict = checkpoint['model_state_dict']
cldm.control_model.load_state_dict(cldm_state_dict)
if 'global_step' in checkpoint:
global_step = checkpoint['global_step']
else:
global_step = 0
if 'epoch' in checkpoint:
epoch = checkpoint['epoch']
else:
epoch = 0
logging.info(f"Resumed from global step {global_step}, epoch {epoch}")
else:
global_step = 0
epoch = 0
if args.distributed:
cldm = torch.nn.parallel.DistributedDataParallel(cldm, device_ids=[args.gpu], find_unused_parameters=True)
cldm_without_ddp = cldm.module
else:
cldm_without_ddp = cldm
optimizer = cldm_without_ddp.configure_optimizers()
if args.controlnet_dir:
checkpoint = torch.load(args.controlnet_dir, map_location='cpu')
# 恢复优化器状态
if 'optimizer_state_dict' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
ddim_sampler = DDIMSampler(cldm_without_ddp)
# show_params(cldm_without_ddp.control_model)
logging.info("# ========== Building model done! ========== #")
max_steps = args.total_train_steps
step_loss = []
epoch_loss = []
# Create SummaryWriter only in the main process
if rank == 0:
writer = SummaryWriter(exp_dir)
logging.info(f"Training for {max_steps} steps...")
# 使用 GradScaler 进行混合精度训练
scaler = GradScaler(enabled=True)
if args.controlnet_dir:
scaler.load_state_dict(checkpoint['scaler_state_dict']) # Load GradScaler state
cldm_without_ddp.train()
while global_step < max_steps:
pbar = tqdm(iterable=dataloader, unit="batch")
for batch in dataloader:
if args.distributed:
sampler_train.set_epoch(epoch)
gt = batch["jpg"].to(device)
hint = batch["hint"].to(device)
prompt = batch["txt"]
_, _, h, w = hint.shape
_, _, H, W = gt.shape
with torch.no_grad():
with autocast(dtype=torch.bfloat16): # 使用 bf16 自动混合精度
z_0 = cldm_without_ddp.get_latent(2 * gt - 1) # rescale to [-1, 1]
features_dict = model.student.backbone(hint, is_training=True)
features = features_dict['x_norm_patchtokens']
features, _ = model.info_bottleneck(features, is_training=False)
features = features.view(-1, h//14, w//14, features.shape[2]) # [B, h, w, c]
features = features.permute(0, 3, 1, 2)
features = (features - features.mean()) / features.std()
features = torch.clamp(features, -5, 5)
features_not_zero = features
if torch.rand(1).item() < 0.1: # 10% of the time, set features to zero
features = torch.zeros_like(features)
cond = cldm_without_ddp.prepare_condition(prompt, features) # cond["c_crossattn"]: txt embed, cond["c_concat"]: features
with autocast(dtype=torch.bfloat16): # bf16 自动混合精度
t = torch.randint(0, cldm_without_ddp.num_timesteps, (z_0.shape[0],), device=device).long()
loss, _ = cldm_without_ddp.p_losses(z_0, cond, t)
optimizer.zero_grad()
# loss.backward()
# optimizer.step()
scaler.scale(loss).backward() # 使用 GradScaler 缩放损失
scaler.step(optimizer)
scaler.update()
global_step += 1
step_loss.append(loss.item())
epoch_loss.append(loss.item())
pbar.update(1)
pbar.set_description(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {loss.item():.6f}")
# Log loss values
if rank == 0 and global_step % args.log_every == 0 and global_step > 0:
avg_loss = np.mean(step_loss)
step_loss.clear()
writer.add_scalar("loss/loss_simple_step", avg_loss, global_step)
# Save checkpoint
if rank == 0 and global_step % args.ckpt_every == 0 and global_step > 0:
# Create a checkpoint dictionary
checkpoint = {
'model_state_dict': cldm_without_ddp.control_model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(), # Save optimizer state
'scaler_state_dict': scaler.state_dict(), # Save GradScaler state
'global_step': global_step, # Save current iteration
'epoch': epoch, # Save current epoch
}
ckpt_path = f"{ckpt_dir}/{global_step:07d}.pt"
torch.save(checkpoint, ckpt_path)
if rank == 0 and (global_step % args.image_every == 0 or global_step <= 1):
eta = args.eta
ddim_steps = args.ddim_steps
cldm_without_ddp.eval()
print("Logging images...")
shape = (4, H // 8, W // 8)
vis_feat = features_not_zero[0].unsqueeze(0)
vis_txt = prompt[0]
# print("features shape: ", vis_feat.shape)
# print("txt: ", vis_txt)
# Log the text to TensorBoard
# writer.add_text("text/prompt", vis_txt, global_step)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
log_cond = cldm_without_ddp.prepare_condition(vis_txt, vis_feat) # feat not zero
samples, _ = ddim_sampler.sample(ddim_steps, 1, shape, log_cond, verbose=False, eta=eta)
x_samples = cldm_without_ddp.decode_first_stage(samples)
# torchvision.utils.save_image(x_samples, f"{exp_dir}/samples_{global_step:07d}.png")
x_samples = (x_samples + 1) / 2
# torchvision.utils.save_image(x_samples, f"{exp_dir}/samples_{global_step:07d}_norm.png")
uc_cross = cldm_without_ddp.get_unconditional_conditioning(1)
uc_feat = torch.zeros_like(vis_feat)
uc_full = {"c_crossattn": [uc_cross], "c_concat": uc_feat}
samples_cfg, _ = ddim_sampler.sample(ddim_steps, 1, shape, log_cond, verbose=False, eta=eta,
unconditional_guidance_scale=args.unconditional_guidance_scale,
unconditional_conditioning=uc_full)
x_samples_cfg = cldm_without_ddp.decode_first_stage(samples_cfg)
x_samples_cfg = (x_samples_cfg + 1) / 2
samples_uncond, _ = ddim_sampler.sample(ddim_steps, 1, shape, uc_full, verbose=False, eta=eta)
x_samples_uncond = cldm_without_ddp.decode_first_stage(samples_uncond)
x_samples_uncond = (x_samples_uncond + 1) / 2
log_features = visualize_features(vis_feat)
for tag, image in [
("image/samples", x_samples),
("image/samples_cfg", x_samples_cfg),
("image/samples_uncond", x_samples_uncond),
("image/gt", gt[0]), ("image/condition", log_features),
("image/hint", hint[0]),
]:
# Convert BFloat16 images to float32 before logging
image = image.to(torch.float32) # Alternatively, you can convert to uint8 if required
writer.add_image(tag, make_grid(image, nrow=1), global_step)
cldm_without_ddp.train()
if global_step == max_steps:
break
pbar.close()
epoch += 1
if rank == 0:
avg_epoch_loss = np.mean(epoch_loss)
epoch_loss.clear()
writer.add_scalar("loss/loss_simple_epoch", avg_epoch_loss, global_step)
# logging.info(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {avg_epoch_loss:.6f}")
logging.info("done!")
if rank == 0:
writer.close()
if args.distributed:
dist.barrier()
if __name__ == '__main__':
parser = argparse.ArgumentParser('DeiT training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)