Update README.md
#10
by
						
AngelVenerov
	
							
						- opened
							
					
    	
        README.md
    CHANGED
    
    | @@ -32,7 +32,7 @@ Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models ( | |
| 32 | 
             
            - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
         | 
| 33 | 
             
            - Number of Parameters: 32.5B
         | 
| 34 | 
             
            - Number of Paramaters (Non-Embedding): 31.0B
         | 
| 35 | 
            -
            - Number of Layers:  | 
| 36 | 
             
            - Number of Attention Heads (GQA): 40 for Q and 8 for KV
         | 
| 37 | 
             
            - Context Length: Full 131,072 tokens
         | 
| 38 | 
             
              - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
         | 
| @@ -78,7 +78,7 @@ model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
| 78 |  | 
| 79 | 
             
            generated_ids = model.generate(
         | 
| 80 | 
             
                **model_inputs,
         | 
| 81 | 
            -
                max_new_tokens= | 
| 82 | 
             
            )
         | 
| 83 | 
             
            generated_ids = [
         | 
| 84 | 
             
                output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
         | 
|  | |
| 32 | 
             
            - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
         | 
| 33 | 
             
            - Number of Parameters: 32.5B
         | 
| 34 | 
             
            - Number of Paramaters (Non-Embedding): 31.0B
         | 
| 35 | 
            +
            - Number of Layers: 512
         | 
| 36 | 
             
            - Number of Attention Heads (GQA): 40 for Q and 8 for KV
         | 
| 37 | 
             
            - Context Length: Full 131,072 tokens
         | 
| 38 | 
             
              - Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2.5 for handling long texts.
         | 
|  | |
| 78 |  | 
| 79 | 
             
            generated_ids = model.generate(
         | 
| 80 | 
             
                **model_inputs,
         | 
| 81 | 
            +
                max_new_tokens=2048
         | 
| 82 | 
             
            )
         | 
| 83 | 
             
            generated_ids = [
         | 
| 84 | 
             
                output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
         | 
