See axolotl config
axolotl version: 0.8.0
base_model: meta-llama/Llama-3.1-8B-Instruct
load_in_8bit: false
load_in_4bit: false
strict: false
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
  - path: Sandevistan_cleaned.jsonl
    type: customllama3_stan
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out
fix_untrained_tokens: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
wandb_project: Pneuma
wandb_entity: 
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 8
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000075
max_grad_norm: 1
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: false
plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
hub_model_id: Replete-AI/L3-Pneuma-8B
hub_strategy: every_save
warmup_steps: 10
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|begin_of_text|>"
  eos_token: "<|end_of_text|>"
  pad_token: "<|end_of_text|>"
tokens:
L3-Pneuma-8B
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the Sandevistan_cleaned.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.7796
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
 - train_batch_size: 8
 - eval_batch_size: 8
 - seed: 42
 - gradient_accumulation_steps: 16
 - total_train_batch_size: 128
 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_steps: 10
 - num_epochs: 2.0
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 1.3399 | 0.0023 | 1 | 1.3175 | 
| 0.846 | 0.3332 | 143 | 0.8312 | 
| 0.8103 | 0.6665 | 286 | 0.8021 | 
| 0.7617 | 0.9997 | 429 | 0.7737 | 
| 0.5824 | 1.3309 | 572 | 0.7851 | 
| 0.5651 | 1.6641 | 715 | 0.7798 | 
| 0.5738 | 1.9974 | 858 | 0.7796 | 
Framework versions
- Transformers 4.51.3
 - Pytorch 2.6.0+cu124
 - Datasets 3.5.0
 - Tokenizers 0.21.1
 
- Downloads last month
 - 3
 
Model tree for Replete-AI/L3-Pneuma-8B
Base model
meta-llama/Llama-3.1-8B
				Finetuned
	
	
meta-llama/Llama-3.1-8B-Instruct