Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the multi_stsb_de, multi_stsb_es, multi_stsb_fr, multi_stsb_it, multi_stsb_nl, multi_stsb_pl, multi_stsb_pt, multi_stsb_ru and multi_stsb_zh datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): MultiHeadGeneralizedPooling(
(P): ModuleList(
(0-7): 8 x Linear(in_features=768, out_features=96, bias=True)
)
(W1): ModuleList(
(0-7): 8 x Linear(in_features=96, out_features=384, bias=True)
)
(W2): ModuleList(
(0-7): 8 x Linear(in_features=384, out_features=96, bias=True)
)
)
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/large_directFourEpoch_additivePooling_randomInit_stsModel")
# Run inference
sentences = [
'Dois cães a lutar na neve.',
'Dois cães brincam na neve.',
'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sts-eval, sts-test, sts-test, sts-test, sts-test, sts-test, sts-test, sts-test, sts-test, sts-test and sts-testEmbeddingSimilarityEvaluator| Metric | sts-eval | sts-test |
|---|---|---|
| pearson_cosine | 0.8344 | 0.7794 |
| spearman_cosine | 0.8514 | 0.7832 |
sts-evalEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.836 |
| spearman_cosine | 0.8555 |
sts-evalEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.8334 |
| spearman_cosine | 0.8542 |
sts-evalEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.8326 |
| spearman_cosine | 0.8526 |
sts-evalEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.8325 |
| spearman_cosine | 0.8527 |
sts-evalEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.8267 |
| spearman_cosine | 0.8466 |
sts-evalEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.8326 |
| spearman_cosine | 0.854 |
sts-evalEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.827 |
| spearman_cosine | 0.8449 |
sts-evalEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.8337 |
| spearman_cosine | 0.8512 |
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Ein Flugzeug hebt gerade ab. |
Ein Flugzeug hebt gerade ab. |
1.0 |
Ein Mann spielt eine große Flöte. |
Ein Mann spielt eine Flöte. |
0.7599999904632568 |
Ein Mann streicht geriebenen Käse auf eine Pizza. |
Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza. |
0.7599999904632568 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Un avión está despegando. |
Un avión está despegando. |
1.0 |
Un hombre está tocando una gran flauta. |
Un hombre está tocando una flauta. |
0.7599999904632568 |
Un hombre está untando queso rallado en una pizza. |
Un hombre está untando queso rallado en una pizza cruda. |
0.7599999904632568 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Un avion est en train de décoller. |
Un avion est en train de décoller. |
1.0 |
Un homme joue d'une grande flûte. |
Un homme joue de la flûte. |
0.7599999904632568 |
Un homme étale du fromage râpé sur une pizza. |
Un homme étale du fromage râpé sur une pizza non cuite. |
0.7599999904632568 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Un aereo sta decollando. |
Un aereo sta decollando. |
1.0 |
Un uomo sta suonando un grande flauto. |
Un uomo sta suonando un flauto. |
0.7599999904632568 |
Un uomo sta spalmando del formaggio a pezzetti su una pizza. |
Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta. |
0.7599999904632568 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Er gaat een vliegtuig opstijgen. |
Er gaat een vliegtuig opstijgen. |
1.0 |
Een man speelt een grote fluit. |
Een man speelt fluit. |
0.7599999904632568 |
Een man smeert geraspte kaas op een pizza. |
Een man strooit geraspte kaas op een ongekookte pizza. |
0.7599999904632568 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Samolot wystartował. |
Samolot wystartował. |
1.0 |
Człowiek gra na dużym flecie. |
Człowiek gra na flecie. |
0.7599999904632568 |
Mężczyzna rozsiewa na pizzy rozdrobniony ser. |
Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy. |
0.7599999904632568 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Um avião está a descolar. |
Um avião aéreo está a descolar. |
1.0 |
Um homem está a tocar uma grande flauta. |
Um homem está a tocar uma flauta. |
0.7599999904632568 |
Um homem está a espalhar queijo desfiado numa pizza. |
Um homem está a espalhar queijo desfiado sobre uma pizza não cozida. |
0.7599999904632568 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Самолет взлетает. |
Взлетает самолет. |
1.0 |
Человек играет на большой флейте. |
Человек играет на флейте. |
0.7599999904632568 |
Мужчина разбрасывает сыр на пиццу. |
Мужчина разбрасывает измельченный сыр на вареную пиццу. |
0.7599999904632568 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
一架飞机正在起飞。 |
一架飞机正在起飞。 |
1.0 |
一个男人正在吹一支大笛子。 |
一个人在吹笛子。 |
0.7599999904632568 |
一名男子正在比萨饼上涂抹奶酪丝。 |
一名男子正在将奶酪丝涂抹在未熟的披萨上。 |
0.7599999904632568 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Ein Mann mit einem Schutzhelm tanzt. |
Ein Mann mit einem Schutzhelm tanzt. |
1.0 |
Ein kleines Kind reitet auf einem Pferd. |
Ein Kind reitet auf einem Pferd. |
0.949999988079071 |
Ein Mann verfüttert eine Maus an eine Schlange. |
Der Mann füttert die Schlange mit einer Maus. |
1.0 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Un hombre con un casco está bailando. |
Un hombre con un casco está bailando. |
1.0 |
Un niño pequeño está montando a caballo. |
Un niño está montando a caballo. |
0.949999988079071 |
Un hombre está alimentando a una serpiente con un ratón. |
El hombre está alimentando a la serpiente con un ratón. |
1.0 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Un homme avec un casque de sécurité est en train de danser. |
Un homme portant un casque de sécurité est en train de danser. |
1.0 |
Un jeune enfant monte à cheval. |
Un enfant monte à cheval. |
0.949999988079071 |
Un homme donne une souris à un serpent. |
L'homme donne une souris au serpent. |
1.0 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Un uomo con l'elmetto sta ballando. |
Un uomo che indossa un elmetto sta ballando. |
1.0 |
Un bambino piccolo sta cavalcando un cavallo. |
Un bambino sta cavalcando un cavallo. |
0.949999988079071 |
Un uomo sta dando da mangiare un topo a un serpente. |
L'uomo sta dando da mangiare un topo al serpente. |
1.0 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Een man met een helm is aan het dansen. |
Een man met een helm is aan het dansen. |
1.0 |
Een jong kind rijdt op een paard. |
Een kind rijdt op een paard. |
0.949999988079071 |
Een man voedt een muis aan een slang. |
De man voert een muis aan de slang. |
1.0 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Tańczy mężczyzna w twardym kapeluszu. |
Tańczy mężczyzna w twardym kapeluszu. |
1.0 |
Małe dziecko jedzie na koniu. |
Dziecko jedzie na koniu. |
0.949999988079071 |
Człowiek karmi węża myszką. |
Ten człowiek karmi węża myszką. |
1.0 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Um homem de chapéu duro está a dançar. |
Um homem com um capacete está a dançar. |
1.0 |
Uma criança pequena está a montar a cavalo. |
Uma criança está a montar a cavalo. |
0.949999988079071 |
Um homem está a alimentar um rato a uma cobra. |
O homem está a alimentar a cobra com um rato. |
1.0 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
Человек в твердой шляпе танцует. |
Мужчина в твердой шляпе танцует. |
1.0 |
Маленький ребенок едет верхом на лошади. |
Ребенок едет на лошади. |
0.949999988079071 |
Мужчина кормит мышь змее. |
Человек кормит змею мышью. |
1.0 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
一个戴着硬帽子的人在跳舞。 |
一个戴着硬帽的人在跳舞。 |
1.0 |
一个小孩子在骑马。 |
一个孩子在骑马。 |
0.949999988079071 |
一个人正在用老鼠喂蛇。 |
那人正在给蛇喂老鼠。 |
1.0 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4warmup_ratio: 0.1overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | multi stsb de loss | multi stsb es loss | multi stsb fr loss | multi stsb it loss | multi stsb nl loss | multi stsb pl loss | multi stsb pt loss | multi stsb ru loss | multi stsb zh loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.0 | 3240 | 4.3573 | 4.3951 | 4.4099 | 4.4457 | 4.4373 | 4.4244 | 4.5118 | 4.4754 | 4.4640 | 4.3865 | 0.8335 | - |
| 2.0 | 6480 | 3.9482 | 4.9132 | 4.9378 | 5.0707 | 4.9663 | 4.8902 | 4.9785 | 4.9303 | 5.0369 | 4.8343 | 0.8459 | - |
| 3.0 | 9720 | 3.6251 | 5.7658 | 5.6844 | 5.8164 | 5.8314 | 5.7706 | 5.6396 | 5.8485 | 5.8846 | 5.4936 | 0.8549 | - |
| 4.0 | 12960 | 3.2761 | 6.6703 | 6.6595 | 6.8158 | 6.8143 | 6.6985 | 6.6876 | 6.7388 | 6.9709 | 6.4154 | 0.8512 | - |
| -1 | -1 | - | - | - | - | - | - | - | - | - | - | - | 0.7832 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}