Depth Estimation
fastdepth / README.md
FBAGSTM's picture
Release AI-ModelZoo-4.0.0
d760fca verified
metadata
license: apache-2.0
pipeline_tag: depth-estimation

FastDepth

Use case : Depth Estimation

Model description

FastDepth is a lightweight encoder-decoder network designed for real-time monocular depth estimation, optimized for edge devices. This implementation is based on model number 146 from PINTO's model zoo, which builds upon a MobileNetV1 based feature extractor and a fast decoder.

Although the original training dataset is not explicitly provided, it is most likely NYU Depth V2, a standard benchmark dataset for indoor depth estimation.

Network information

Network Information Value
Framework TensorFlowLite
Quantization int8
Provenance PINTO Model Zoo #146
Paper Link to Paper

The models are quantized using tensorflow lite converter.

Network inputs / outputs

Input Shape Description
(1, H, W, 3) Single RGB image (int8)
Output Shape Description
(1, H, W, 1) Single-channel depth prediction (int8)

Recommended platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [] []
STM32U5 [] []
STM32H7 [] []
STM32MP1 [] []
STM32MP2 [x] [x]
STM32N6 [x] [x]

Performances

Metrics

Measures are done with default STEdgeAI Core version configuration with enabled input / output allocated option.

Reference NPU memory footprint

Model Dataset Format Resolution Series Internal RAM (KiB) External RAM (KiB) Weights Flash (KiB) STEdgeAI Core version
Fast Depth NYU depth v2 Int8 224x224x3 STM32N6 2728.5 0 1347.97 3.0.0
Fast Depth NYU depth v2 Int8 256x256x3 STM32N6 2688 1024 1354.09 3.0.0
Fast Depth NYU depth v2 Int8 320x320x3 STM32N6 2800 2800 1376.78 3.0.0

Reference NPU inference time

Model Dataset Format Resolution Board Execution Engine Inference time (ms) Inf / sec STEdgeAI Core version
Fast Depth NYU depth v2 Int8 224x224x3 STM32N6570-DK NPU/MCU 24.49 40.83 3.0.0
Fast Depth NYU depth v2 Int8 256x256x3 STM32N6570-DK NPU/MCU 75.01 13.33 3.0.0
Fast Depth NYU depth v2 Int8 320x320x3 STM32N6570-DK NPU/MCU 477.93 2.09 3.0.0

Please refer to the stm32ai-modelzoo-services GitHub here