See axolotl config
axolotl version: 0.13.0.dev0
base_model: Qwen/Qwen3-8B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
quantization_config:
load_in_4bit: false
bnb_4bit_quant_type: "nf4"
bnb_4bit_compute_dtype: "bfloat16"
bnb_4bit_use_double_quant: false
strict: false
train_on_inputs: false
datasets:
- path: /workspace/outputs/training_data/
ds_type: json
data_files:
- ge_v2.json
type: chat_template
dataset_prepared_path:
val_set_size: 0.00
output_dir: /workspace/outputs/FT_v3_ge
sequence_len: 1024
sample_packing: true
eval_sample_packing: true
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
use_wandb: true
wandb_project: "Tiboobs-GE"
wandb_name: SFT_GE
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 3 # maybe more
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.1
#evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
#fsdp:
# - full_shard
# - auto_wrap
#fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: Qwen3DecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_sharding_strategy: FULL_SHARD
special_tokens:
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
workspace/outputs/FT_v3_ge
This model is a fine-tuned version of Qwen/Qwen3-8B on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 2
- total_train_batch_size: 14
- total_eval_batch_size: 7
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12
- training_steps: 126
Training results
Framework versions
- PEFT 0.17.1
- Transformers 4.56.1
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 1