metadata
			language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - HumanLLMs/Human-Like-Qwen2.5-7B-Instruct
  - bunnycore/Qwen-2.5-7b-rp-lora
model-index:
  - name: Q2.5-Humane-RP
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 44.12
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 37.65
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 30.44
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 9.17
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 15.33
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 38.8
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Q2.5-Humane-RP
          name: Open LLM Leaderboard
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Quant: https://huggingface.co/Triangle104/Q2.5-Humane-RP-Q4_K_M-GGUF
Merge Method
This model was merged using the passthrough merge method using HumanLLMs/Human-Like-Qwen2.5-7B-Instruct + bunnycore/Qwen-2.5-7b-rp-lora as a base.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
base_model: HumanLLMs/Human-Like-Qwen2.5-7B-Instruct+bunnycore/Qwen-2.5-7b-rp-lora
dtype: bfloat16
merge_method: passthrough
models:
  - model: HumanLLMs/Human-Like-Qwen2.5-7B-Instruct+bunnycore/Qwen-2.5-7b-rp-lora
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 29.25 | 
| IFEval (0-Shot) | 44.12 | 
| BBH (3-Shot) | 37.65 | 
| MATH Lvl 5 (4-Shot) | 30.44 | 
| GPQA (0-shot) | 9.17 | 
| MuSR (0-shot) | 15.33 | 
| MMLU-PRO (5-shot) | 38.80 | 
