metadata
			library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - wnut_17
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: my_awesome_wnut_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wnut_17
          type: wnut_17
          config: wnut_17
          split: test
          args: wnut_17
        metrics:
          - name: Precision
            type: precision
            value: 0.5479274611398963
          - name: Recall
            type: recall
            value: 0.39202965708989806
          - name: F1
            type: f1
            value: 0.45705024311183146
          - name: Accuracy
            type: accuracy
            value: 0.9464323885255013
my_awesome_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3127
 - Precision: 0.5479
 - Recall: 0.3920
 - F1: 0.4571
 - Accuracy: 0.9464
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 16
 - eval_batch_size: 16
 - seed: 42
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - num_epochs: 5
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | 
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 213 | 0.2736 | 0.5923 | 0.3123 | 0.4090 | 0.9435 | 
| No log | 2.0 | 426 | 0.2811 | 0.5439 | 0.3614 | 0.4343 | 0.9456 | 
| 0.0767 | 3.0 | 639 | 0.3117 | 0.5765 | 0.3596 | 0.4429 | 0.9463 | 
| 0.0767 | 4.0 | 852 | 0.3040 | 0.5443 | 0.3874 | 0.4526 | 0.9463 | 
| 0.0315 | 5.0 | 1065 | 0.3127 | 0.5479 | 0.3920 | 0.4571 | 0.9464 | 
Framework versions
- Transformers 4.51.3
 - Pytorch 2.6.0+cu124
 - Datasets 3.5.1
 - Tokenizers 0.21.1