See axolotl config
axolotl version: 0.13.0.dev0
# === Model Configuration ===
base_model: Qwen/Qwen3-4B-Instruct-2507
load_in_8bit: false
load_in_4bit: false
# === Training Setup ===
num_epochs: 2
micro_batch_size: 1
gradient_accumulation_steps: 4
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
# === Hyperparameter Configuration ===
optimizer: paged_ademamix_8bit
learning_rate: 1e-5
lr_scheduler: constant
weight_decay: 0.01
warmup_ratio: 0.05
cosine_min_lr_ratio: 0.1
# === Data Configuration ===
datasets:
- path: WokeAI/polititune-tankie-warmup
type: chat_template
split: train
chat_template: tokenizer_default
dataset_prepared_path: last_run_prepared
# === Hardware Optimization ===
gradient_checkpointing: offload
# === Wandb Tracking ===
wandb_project: polititune-q34b-warmup
# === Checkpointing ===
saves_per_epoch: 2
save_only_model: true
# === Advanced Settings ===
output_dir: ./model-output
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
trust_remote_code: true
special_tokens:
eos_token: <|im_end|>
model-output
This model is a fine-tuned version of Qwen/Qwen3-4B-Instruct-2507 on the WokeAI/polititune-tankie-warmup dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 2
- training_steps: 22
Training results
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 347
Model tree for WokeAI/Tankie-4B-SFT-Warmup
Base model
Qwen/Qwen3-4B-Instruct-2507