Dataset credits go to: theblackcat102
How to run inference:
import transformers
import torch
def fmt_prompt(prompt: str) -> str:
    return f"""[Instructions]:\n{prompt}\n\n[Response]:"""
if __name__ == "__main__":
    model_name = "abacaj/starcoderbase-1b-sft"
    tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
    model = (
        transformers.AutoModelForCausalLM.from_pretrained(
            model_name,
        )
        .to("cuda:0")
        .eval()
    )
    prompt = "Write a python function to sort the following array in ascending order, don't use any built in sorting methods: [9,2,8,1,5]"
    prompt_input = fmt_prompt(prompt)
    inputs = tokenizer(prompt_input, return_tensors="pt").to(model.device)
    input_ids_cutoff = inputs.input_ids.size(dim=1)
    with torch.no_grad():
        generated_ids = model.generate(
            **inputs,
            use_cache=True,
            max_new_tokens=512,
            temperature=0.2,
            top_p=0.95,
            do_sample=True,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.pad_token_id,
        )
    completion = tokenizer.decode(
        generated_ids[0][input_ids_cutoff:],
        skip_special_tokens=True,
    )
    print(completion)
Link to charts: https://api.wandb.ai/links/abacaj1/c4nkcs9r
Code to train model: https://github.com/abacaj/train-with-fsdp
- Downloads last month
- 3
Model tree for abacaj/starcoderbase-1b-sft
Dataset used to train abacaj/starcoderbase-1b-sft
Spaces using abacaj/starcoderbase-1b-sft 3
Evaluation results
- pass@1 on HumanEvalself-reported39.000
- pass@1 on MBPPself-reported31.740


