abdulrahman-nuzha's picture
End of training
3ac929b verified
metadata
library_name: transformers
base_model: UBC-NLP/MARBERT
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: UBC-NLP-MARBERT-arabic-fp16-allagree-cameltools
    results: []

UBC-NLP-MARBERT-arabic-fp16-allagree-cameltools

This model is a fine-tuned version of UBC-NLP/MARBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2191
  • Accuracy: 0.9384
  • Precision: 0.9385
  • Recall: 0.9384
  • F1: 0.9384

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.9917 0.7463 50 0.6973 0.7668 0.8138 0.7668 0.6876
0.3936 1.4925 100 0.2191 0.9384 0.9385 0.9384 0.9384
0.1789 2.2388 150 0.1868 0.9450 0.9448 0.9450 0.9448
0.1503 2.9851 200 0.2098 0.9291 0.9323 0.9291 0.9296
0.0871 3.7313 250 0.2069 0.9431 0.9435 0.9431 0.9433
0.0484 4.4776 300 0.2293 0.9506 0.9506 0.9506 0.9506

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1