Update README.md
#4
by
Honika
- opened
README.md
CHANGED
|
@@ -1,3 +1,84 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- ta
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# Tamil-Qwen3-4B-Inst
|
| 10 |
+
|
| 11 |
+
**Tamil-Qwen3-4B-Inst** is a lightweight Tamil-English bilingual instruction-tuned model designed for efficient deployment and strong performance on instruction-following tasks.
|
| 12 |
+
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
## Model Overview
|
| 16 |
+
|
| 17 |
+
We developed a specialized model by adapting state-of-the-art open-source base models through:
|
| 18 |
+
|
| 19 |
+
- **Continual Pretraining** on the **Tamil Wikipedia** dataset
|
| 20 |
+
- **Instruction Finetuning** using high-quality, human-annotated Tamil instruction datasets from the **Aya Dataset**
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
## Model Summary
|
| 24 |
+
|
| 25 |
+
| Feature | Description |
|
| 26 |
+
|----------|-------------|
|
| 27 |
+
| **Base Model** |Qwen3-4B(trained in tamil wikipedia dataset) |
|
| 28 |
+
| **Parameters** | 4B |
|
| 29 |
+
| **Datasets** | https://huggingface.co/datasets/CohereLabs/aya_dataset,https://huggingface.co/datasets/wikimedia/wikipedia/viewer/20231101.ta |
|
| 30 |
+
| **Training Precision** | bfloat16 |
|
| 31 |
+
| **Epochs (Total)** | 6|
|
| 32 |
+
| **Languages** | Tamil, English |
|
| 33 |
+
| **Use Case** | Instruction following, conversational AI, and Tamil language tasks |
|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
## Prompting Format
|
| 37 |
+
|
| 38 |
+
**Prompt Template Without Input**
|
| 39 |
+
|
| 40 |
+
```
|
| 41 |
+
{system_prompt}
|
| 42 |
+
### Instruction:
|
| 43 |
+
{instruction or query}
|
| 44 |
+
### Response:
|
| 45 |
+
{response}
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
**Prompt Template With Input**
|
| 49 |
+
|
| 50 |
+
```
|
| 51 |
+
{system_prompt}
|
| 52 |
+
### Instruction:
|
| 53 |
+
{instruction or query}
|
| 54 |
+
### Input:
|
| 55 |
+
{input}
|
| 56 |
+
### Response:
|
| 57 |
+
{response}
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Citation
|
| 61 |
+
|
| 62 |
+
If you use this model in your research, please cite:
|
| 63 |
+
|
| 64 |
+
```bibtex
|
| 65 |
+
@misc{tamilqwen3_4b_inst,
|
| 66 |
+
title={Tamil-Qwen3-4B-Inst: Efficient Bilingual Instruction-Tuned Model},
|
| 67 |
+
author={AITamilNadu},
|
| 68 |
+
year={2025},
|
| 69 |
+
url={https://huggingface.co/aitamilnadu/Tamil-Qwen3-4B-Inst}
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
## Evaluation and Benchmarks
|
| 75 |
+
|
| 76 |
+
| Benchmark | Score |
|
| 77 |
+
|------------|-------|
|
| 78 |
+
| **Average** | 52.08% |
|
| 79 |
+
| ARC Challenge | 45.48% |
|
| 80 |
+
| HellaSwag | 61.64% |
|
| 81 |
+
| MMLU | 56.05% |
|
| 82 |
+
| TruthfulQA | 39.58% |
|
| 83 |
+
| Winogrande | 59.43% |
|
| 84 |
+
| GSM8K | 40.64% |
|