SD / preprocess /pose_align_withdiffaug.py
ak3385's picture
Add files using upload-large-folder tool
ec7f7c9 verified
import os
import sys
this_dir = os.path.dirname(__file__)
mmcv_pkg_root = os.path.join(os.path.dirname(this_dir), "mmcv")
if os.path.exists(mmcv_pkg_root):
print(f"please make sure you have mmcv package successfully installed in local mmcv folder {mmcv_pkg_root}")
print(f">>> [check] sys.path before mmcv insert = {sys.path}")
print(f">>> [check] mmcv_pkg_root = {mmcv_pkg_root}")
if mmcv_pkg_root in sys.path:
sys.path.remove(mmcv_pkg_root)
sys.path.insert(0, mmcv_pkg_root)
print(f">>> [check] sys.path after mmcv insert = {sys.path}")
else:
print(f">>> [check] mmcv_pkg_root not exists: {mmcv_pkg_root}")
print(f"please make sure you have mmcv package successfully installed by 'pip install mmcv' or 'mim install mmcv'")
import mmcv
print(">>> [check] mmcv __file__ =", getattr(mmcv, "__file__", None))
print(">>> [check] mmcv __version__ =", getattr(mmcv, "__version__", None))
assert mmcv.__version__ >= "2.0.0" and mmcv.__version__ < "2.2.0", "mmcv version must be >=2.0.0 and <2.2.0"
import numpy as np
import argparse
import torch
import copy
import cv2
import os
import moviepy.video.io.ImageSequenceClip
from pose.script.dwpose import DWposeDetector, draw_pose
from pose.script.util import size_calculate, warpAffine_kps
from utils_aug import pose_aug_diff
'''
Detect dwpose from img, then align it by scale parameters
img: frame from the pose video
detector: DWpose
scales: scale parameters
'''
def align_img(img, pose_ori, scales, detect_resolution, image_resolution):
body_pose = copy.deepcopy(pose_ori['bodies']['candidate'])
hands = copy.deepcopy(pose_ori['hands'])
faces = copy.deepcopy(pose_ori['faces'])
'''
计算逻辑:
0. 该函数内进行绝对变换,始终保持人体中心点 body_pose[1] 不变
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
2. 用点在图中的实际坐标来计算。
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
注意:dwpose 输出是 (w, h)
'''
# h不变,w缩放到原比例
H_in, W_in, C_in = img.shape
video_ratio = W_in / H_in
body_pose[:, 0] = body_pose[:, 0] * video_ratio
hands[:, :, 0] = hands[:, :, 0] * video_ratio
faces[:, :, 0] = faces[:, :, 0] * video_ratio
# scales of 10 body parts
scale_neck = scales["scale_neck"]
# scale_face = scales["scale_face"]
scale_face_left = scales["scale_face_left"]
scale_face_right = scales["scale_face_right"]
scale_shoulder = scales["scale_shoulder"]
scale_arm_upper = scales["scale_arm_upper"]
scale_arm_lower = scales["scale_arm_lower"]
scale_hand = scales["scale_hand"]
scale_body_len = scales["scale_body_len"]
scale_leg_upper = scales["scale_leg_upper"]
scale_leg_lower = scales["scale_leg_lower"]
scale_sum = 0
count = 0
# scale_list = [scale_neck, scale_face, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand, scale_body_len, scale_leg_upper, scale_leg_lower]
scale_list = [scale_neck, scale_face_left, scale_face_right, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand, scale_body_len, scale_leg_upper, scale_leg_lower]
for i in range(len(scale_list)):
if not np.isinf(scale_list[i]):
scale_sum = scale_sum + scale_list[i]
count = count + 1
for i in range(len(scale_list)):
if np.isinf(scale_list[i]):
scale_list[i] = scale_sum/count
# offsets of each part
offset = dict()
# offset["14_15_16_17_to_0"] = body_pose[[14,15,16,17], :] - body_pose[[0], :]
offset["14_16_to_0"] = body_pose[[14,16], :] - body_pose[[0], :]
offset["15_17_to_0"] = body_pose[[15,17], :] - body_pose[[0], :]
offset["3_to_2"] = body_pose[[3], :] - body_pose[[2], :]
offset["4_to_3"] = body_pose[[4], :] - body_pose[[3], :]
offset["6_to_5"] = body_pose[[6], :] - body_pose[[5], :]
offset["7_to_6"] = body_pose[[7], :] - body_pose[[6], :]
offset["9_to_8"] = body_pose[[9], :] - body_pose[[8], :]
offset["10_to_9"] = body_pose[[10], :] - body_pose[[9], :]
offset["12_to_11"] = body_pose[[12], :] - body_pose[[11], :]
offset["13_to_12"] = body_pose[[13], :] - body_pose[[12], :]
offset["hand_left_to_4"] = hands[1, :, :] - body_pose[[4], :]
offset["hand_right_to_7"] = hands[0, :, :] - body_pose[[7], :]
# neck
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_neck)
neck = body_pose[[0], :]
neck = warpAffine_kps(neck, M)
body_pose[[0], :] = neck
# # body_pose_up_shoulder
# c_ = body_pose[0]
# cx = c_[0]
# cy = c_[1]
# M = cv2.getRotationMatrix2D((cx,cy), 0, scale_face)
# body_pose_up_shoulder = offset["14_15_16_17_to_0"] + body_pose[[0], :]
# body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
# body_pose[[14,15,16,17], :] = body_pose_up_shoulder
# body_pose_up_shoulder left
c_ = body_pose[0]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_face_left)
body_pose_up_shoulder = offset["14_16_to_0"] + body_pose[[0], :]
body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
body_pose[[14,16], :] = body_pose_up_shoulder
# body_pose_up_shoulder right
c_ = body_pose[0]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_face_right)
body_pose_up_shoulder = offset["15_17_to_0"] + body_pose[[0], :]
body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
body_pose[[15,17], :] = body_pose_up_shoulder
# shoulder
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_shoulder)
body_pose_shoulder = body_pose[[2,5], :]
body_pose_shoulder = warpAffine_kps(body_pose_shoulder, M)
body_pose[[2,5], :] = body_pose_shoulder
# arm upper left
c_ = body_pose[2]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_upper)
elbow = offset["3_to_2"] + body_pose[[2], :]
elbow = warpAffine_kps(elbow, M)
body_pose[[3], :] = elbow
# arm lower left
c_ = body_pose[3]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_lower)
wrist = offset["4_to_3"] + body_pose[[3], :]
wrist = warpAffine_kps(wrist, M)
body_pose[[4], :] = wrist
# hand left
c_ = body_pose[4]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_hand)
hand = offset["hand_left_to_4"] + body_pose[[4], :]
hand = warpAffine_kps(hand, M)
hands[1, :, :] = hand
# arm upper right
c_ = body_pose[5]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_upper)
elbow = offset["6_to_5"] + body_pose[[5], :]
elbow = warpAffine_kps(elbow, M)
body_pose[[6], :] = elbow
# arm lower right
c_ = body_pose[6]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_arm_lower)
wrist = offset["7_to_6"] + body_pose[[6], :]
wrist = warpAffine_kps(wrist, M)
body_pose[[7], :] = wrist
# hand right
c_ = body_pose[7]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_hand)
hand = offset["hand_right_to_7"] + body_pose[[7], :]
hand = warpAffine_kps(hand, M)
hands[0, :, :] = hand
# body len
c_ = body_pose[1]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_body_len)
body_len = body_pose[[8,11], :]
body_len = warpAffine_kps(body_len, M)
body_pose[[8,11], :] = body_len
# leg upper left
c_ = body_pose[8]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_upper)
knee = offset["9_to_8"] + body_pose[[8], :]
knee = warpAffine_kps(knee, M)
body_pose[[9], :] = knee
# leg lower left
c_ = body_pose[9]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_lower)
ankle = offset["10_to_9"] + body_pose[[9], :]
ankle = warpAffine_kps(ankle, M)
body_pose[[10], :] = ankle
# leg upper right
c_ = body_pose[11]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_upper)
knee = offset["12_to_11"] + body_pose[[11], :]
knee = warpAffine_kps(knee, M)
body_pose[[12], :] = knee
# leg lower right
c_ = body_pose[12]
cx = c_[0]
cy = c_[1]
M = cv2.getRotationMatrix2D((cx,cy), 0, scale_leg_lower)
ankle = offset["13_to_12"] + body_pose[[12], :]
ankle = warpAffine_kps(ankle, M)
body_pose[[13], :] = ankle
# none part
body_pose_none = pose_ori['bodies']['candidate'] == -1.
hands_none = pose_ori['hands'] == -1.
faces_none = pose_ori['faces'] == -1.
body_pose[body_pose_none] = -1.
hands[hands_none] = -1.
nan = float('nan')
if len(hands[np.isnan(hands)]) > 0:
print('nan')
faces[faces_none] = -1.
# last check nan -> -1.
body_pose = np.nan_to_num(body_pose, nan=-1.)
hands = np.nan_to_num(hands, nan=-1.)
faces = np.nan_to_num(faces, nan=-1.)
# return
pose_align = copy.deepcopy(pose_ori)
pose_align['bodies']['candidate'] = body_pose
pose_align['hands'] = hands
pose_align['faces'] = faces
return pose_align
def run_align_video_with_filterPose_translate_smooth(args):
vidfn=args.vidfn
imgfn_refer=args.imgfn_refer
outfn=args.outfn
video = cv2.VideoCapture(vidfn)
width= video.get(cv2.CAP_PROP_FRAME_WIDTH)
height= video.get(cv2.CAP_PROP_FRAME_HEIGHT)
total_frame= video.get(cv2.CAP_PROP_FRAME_COUNT)
fps= video.get(cv2.CAP_PROP_FPS)
print("height:", height)
print("width:", width)
print("fps:", fps)
H_in, W_in = height, width
H_out, W_out = size_calculate(H_in,W_in,args.detect_resolution)
H_out, W_out = size_calculate(H_out,W_out,args.image_resolution)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
detector = DWposeDetector(
det_config = args.yolox_config,
det_ckpt = args.yolox_ckpt,
pose_config = args.dwpose_config,
pose_ckpt = args.dwpose_ckpt,
keypoints_only=False
)
detector = detector.to(device)
#### refer_img 的精确处理 在前边直接处理完毕,就不需要考虑后续 pose 的二次处理 ####
refer_img = cv2.imread(imgfn_refer)
ref_height, ref_width, channels = refer_img.shape
# print("ref_height: ", ref_height)
# print("ref_width: ", ref_width)
aspect_ratio = ref_height / ref_width
# max_area = "832*480"
max_area = "1024*576"
# max_area = "1664*960"
lat_h = round(
np.sqrt(int(eval(max_area)) * aspect_ratio) // 16)
lat_w = round(
np.sqrt(int(eval(max_area)) / aspect_ratio) // 16)
new_height = lat_h * 16
new_width = lat_w * 16
# print("new_height:", new_height)
# print("new_width:", new_width)
# resize_height = int(ref_height*(1.0 * new_height/ref_height))
# resize_width = int(ref_width*(1.0 * new_width/ref_width))
# resize_height = new_height * 2
# resize_width = new_width * 2
resize_height = new_height
resize_width = new_width
# print("resize_height:", resize_height)
# print("resize_width:", resize_width)
refer_img = cv2.resize(refer_img, (resize_width, resize_height), interpolation=cv2.INTER_CUBIC)
ref_height, ref_width, channels = refer_img.shape
output_refer, pose_refer = detector(refer_img,detect_resolution=args.detect_resolution, image_resolution=args.image_resolution, output_type='cv2',return_pose_dict=True)
body_ref_img = pose_refer['bodies']['candidate']
hands_ref_img = pose_refer['hands']
faces_ref_img = pose_refer['faces']
output_refer = cv2.cvtColor(output_refer, cv2.COLOR_RGB2BGR)
skip_frames = args.align_frame
max_frame = args.max_frame
pose_list, video_frame_buffer, video_pose_buffer = [], [], []
cap = cv2.VideoCapture('2.mp4') # 读取视频
while cap.isOpened(): # 当视频被打开时:
ret, frame = cap.read() # 读取视频,读取到的某一帧存储到frame,若是读取成功,ret为True,反之为False
if ret: # 若是读取成功
cv2.imshow('frame', frame) # 显示读取到的这一帧画面
key = cv2.waitKey(25) # 等待一段时间,并且检测键盘输入
if key == ord('q'): # 若是键盘输入'q',则退出,释放视频
cap.release() # 释放视频
break
else:
cap.release()
cv2.destroyAllWindows() # 关闭所有窗口
for i in range(max_frame):
ret, img = video.read()
if img is None:
break
else:
if i < skip_frames:
continue
video_frame_buffer.append(img)
# estimate scale parameters by the 1st frame in the video
if i==skip_frames:
output_1st_img, pose_1st_img = detector(img, args.detect_resolution, args.image_resolution, output_type='cv2', return_pose_dict=True)
body_1st_img = pose_1st_img['bodies']['candidate']
hands_1st_img = pose_1st_img['hands']
faces_1st_img = pose_1st_img['faces']
'''
计算逻辑:
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
2. 用点在图中的实际坐标来计算。
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
注意:dwpose 输出是 (w, h)
'''
# h不变,w缩放到原比例
ref_H, ref_W = refer_img.shape[0], refer_img.shape[1]
ref_ratio = ref_W / ref_H
body_ref_img[:, 0] = body_ref_img[:, 0] * ref_ratio
hands_ref_img[:, :, 0] = hands_ref_img[:, :, 0] * ref_ratio
faces_ref_img[:, :, 0] = faces_ref_img[:, :, 0] * ref_ratio
video_ratio = width / height
body_1st_img[:, 0] = body_1st_img[:, 0] * video_ratio
hands_1st_img[:, :, 0] = hands_1st_img[:, :, 0] * video_ratio
faces_1st_img[:, :, 0] = faces_1st_img[:, :, 0] * video_ratio
# scale
align_args = dict()
dist_1st_img = np.linalg.norm(body_1st_img[0]-body_1st_img[1]) # 0.078
dist_ref_img = np.linalg.norm(body_ref_img[0]-body_ref_img[1]) # 0.106
align_args["scale_neck"] = dist_ref_img / dist_1st_img # align / pose = ref / 1st
# dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[17])
# dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[17])
# align_args["scale_face"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[14]) + np.linalg.norm(body_1st_img[14]-body_1st_img[0])
dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[14]) + np.linalg.norm(body_ref_img[14]-body_ref_img[0])
align_args["scale_face_left"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[17]-body_1st_img[15]) + np.linalg.norm(body_1st_img[15]-body_1st_img[0])
dist_ref_img = np.linalg.norm(body_ref_img[17]-body_ref_img[15]) + np.linalg.norm(body_ref_img[15]-body_ref_img[0])
align_args["scale_face_right"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[5]) # 0.112
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[5]) # 0.174
align_args["scale_shoulder"] = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[3]) # 0.895
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[3]) # 0.134
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[5]-body_1st_img[6])
dist_ref_img = np.linalg.norm(body_ref_img[5]-body_ref_img[6])
s2 = dist_ref_img / dist_1st_img
align_args["scale_arm_upper"] = (s1+s2)/2 # 1.548
dist_1st_img = np.linalg.norm(body_1st_img[3]-body_1st_img[4])
dist_ref_img = np.linalg.norm(body_ref_img[3]-body_ref_img[4])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[6]-body_1st_img[7])
dist_ref_img = np.linalg.norm(body_ref_img[6]-body_ref_img[7])
s2 = dist_ref_img / dist_1st_img
align_args["scale_arm_lower"] = (s1+s2)/2
# hand
dist_1st_img = np.zeros(10)
dist_ref_img = np.zeros(10)
dist_1st_img[0] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,1])
dist_1st_img[1] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,5])
dist_1st_img[2] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,9])
dist_1st_img[3] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,13])
dist_1st_img[4] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,17])
dist_1st_img[5] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,1])
dist_1st_img[6] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,5])
dist_1st_img[7] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,9])
dist_1st_img[8] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,13])
dist_1st_img[9] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,17])
dist_ref_img[0] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,1])
dist_ref_img[1] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,5])
dist_ref_img[2] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,9])
dist_ref_img[3] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,13])
dist_ref_img[4] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,17])
dist_ref_img[5] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,1])
dist_ref_img[6] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,5])
dist_ref_img[7] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,9])
dist_ref_img[8] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,13])
dist_ref_img[9] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,17])
ratio = 0
count = 0
total_iters = 0 # 10
for i in range (total_iters):
if dist_1st_img[i] != 0:
ratio = ratio + dist_ref_img[i]/dist_1st_img[i]
count = count + 1
if count!=0:
align_args["scale_hand"] = (ratio/count+align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/3
else:
align_args["scale_hand"] = (align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/2
# body
dist_1st_img = np.linalg.norm(body_1st_img[1] - (body_1st_img[8] + body_1st_img[11])/2 )
dist_ref_img = np.linalg.norm(body_ref_img[1] - (body_ref_img[8] + body_ref_img[11])/2 )
align_args["scale_body_len"]=dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[8]-body_1st_img[9])
dist_ref_img = np.linalg.norm(body_ref_img[8]-body_ref_img[9])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[11]-body_1st_img[12])
dist_ref_img = np.linalg.norm(body_ref_img[11]-body_ref_img[12])
s2 = dist_ref_img / dist_1st_img
align_args["scale_leg_upper"] = (s1+s2)/2
dist_1st_img = np.linalg.norm(body_1st_img[9]-body_1st_img[10])
dist_ref_img = np.linalg.norm(body_ref_img[9]-body_ref_img[10])
s1 = dist_ref_img / dist_1st_img
dist_1st_img = np.linalg.norm(body_1st_img[12]-body_1st_img[13])
dist_ref_img = np.linalg.norm(body_ref_img[12]-body_ref_img[13])
s2 = dist_ref_img / dist_1st_img
align_args["scale_leg_lower"] = (s1+s2)/2
####################
####################
# need adjust nan
for k,v in align_args.items():
if np.isnan(v):
align_args[k]=1
# centre offset (the offset of key point 1)
offset = body_ref_img[1] - body_1st_img[1]
# pose align
pose_img, pose_ori = detector(img, args.detect_resolution, args.image_resolution, output_type='cv2', return_pose_dict=True)
video_pose_buffer.append(pose_img)
pose_align = align_img(img, pose_ori, align_args, args.detect_resolution, args.image_resolution)
# add centre offset
pose = pose_align
pose['bodies']['candidate'] = pose['bodies']['candidate'] + offset
pose['hands'] = pose['hands'] + offset
pose['faces'] = pose['faces'] + offset
# h不变,w从绝对坐标缩放回0-1 注意这里要回到ref的坐标系
pose['bodies']['candidate'][:, 0] = pose['bodies']['candidate'][:, 0] / ref_ratio
pose['hands'][:, :, 0] = pose['hands'][:, :, 0] / ref_ratio
pose['faces'][:, :, 0] = pose['faces'][:, :, 0] / ref_ratio
pose_list.append(pose)
# stack
body_list = [pose['bodies']['candidate'][:18] for pose in pose_list]
body_list_subset = [pose['bodies']['subset'][:1] for pose in pose_list]
hands_list = [pose['hands'][:2] for pose in pose_list]
faces_list = [pose['faces'][:1] for pose in pose_list]
body_seq = np.stack(body_list , axis=0)
body_seq_subset = np.stack(body_list_subset, axis=0)
hands_seq = np.stack(hands_list , axis=0)
faces_seq = np.stack(faces_list , axis=0)
# concatenate and paint results
# H = 768 # paint height
H = ref_H # paint height
W1 = int((H/ref_H * ref_W)//2 *2)
W2 = int((H/height * width)//2 *2)
result_demo = [] # = Writer(args, None, H, 3*W1+2*W2, outfn, fps)
result_pose_only = [] # Writer(args, None, H, W1, args.outfn_align_pose_video, fps)
result_pose_aug_only = [] # Writer(args, None, H, W1, args.outfn_align_pose_video[:-4] + "_aug" + ".mp4", fps)
offset_x=(-0.2,0.2)
offset_y=(-0.2,0.2)
scale=(0.7,1.3)
aspect_ratio_range=(0.6, 1.4)
offset = (offset_x, offset_y)
for i in range(len(body_seq)):
pose_t={}
pose_t["bodies"]={}
pose_t["bodies"]["candidate"]=body_seq[i]
pose_t["bodies"]["subset"]=body_seq_subset[i]
pose_t["hands"]=hands_seq[i]
pose_t["faces"]=faces_seq[i]
ref_img = cv2.cvtColor(refer_img, cv2.COLOR_RGB2BGR)
ref_img = cv2.resize(ref_img, (W1, H))
ref_pose= cv2.resize(output_refer, (W1, H))
# output_transformed = draw_pose(
# pose_t,
# int(H_in*1024/W_in),
# 1024,
# draw_face=False,
# )
# output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB)
# output_transformed = cv2.resize(output_transformed, (W1, H))
output_transformed = draw_pose( # single.mp4
pose_t,
ref_H*2,
ref_W*2,
draw_face=False,
)
output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB)
# output_transformed = cv2.resize(output_transformed, (W1, H), interpolation=cv2.INTER_CUBIC)
output_transformed_1 = draw_pose( # all.mp4
pose_t,
ref_H,
ref_W,
draw_face=False,
)
output_transformed_1 = cv2.cvtColor(output_transformed_1, cv2.COLOR_BGR2RGB)
# output_transformed_1 = cv2.resize(output_transformed_1, (W1, H), interpolation=cv2.INTER_CUBIC)
pose_t_aug = pose_aug_diff(pose_t.copy(), size=(ref_H, ref_W), offset=offset, scale=scale, aspect_ratio_range=aspect_ratio_range, add_aug=True)
output_transformed_aug = draw_pose( # single_aug.mp4
pose_t_aug,
ref_H*2,
ref_W*2,
draw_face=False,
)
output_transformed_aug = cv2.cvtColor(output_transformed_aug, cv2.COLOR_BGR2RGB)
# output_transformed_aug = cv2.resize(output_transformed_aug, (W1, H), interpolation=cv2.INTER_CUBIC)
output_transformed_aug_1 = draw_pose( # all.mp4
pose_t_aug,
ref_H,
ref_W,
draw_face=False,
)
output_transformed_aug_1 = cv2.cvtColor(output_transformed_aug_1, cv2.COLOR_BGR2RGB)
# output_transformed_aug_1 = cv2.resize(output_transformed_aug_1, (W1, H), interpolation=cv2.INTER_CUBIC)
video_frame = cv2.resize(video_frame_buffer[i], (W2, H), interpolation=cv2.INTER_CUBIC)
video_frame = cv2.cvtColor(video_frame, cv2.COLOR_BGR2RGB)
video_pose = cv2.resize(video_pose_buffer[i], (W2, H), interpolation=cv2.INTER_CUBIC)
if (4*W1 + 2*W2) <= 16384:
res = np.concatenate([ref_img, ref_pose, output_transformed_1, output_transformed_aug_1, video_frame, video_pose], axis=1)
else:
res = np.concatenate([ref_img, ref_pose, output_transformed_1, output_transformed_aug_1, video_frame], axis=1)
result_demo.append(res) # all.mp4
result_pose_only.append(output_transformed) # single.mp4
result_pose_aug_only.append(output_transformed_aug) # single_aug.mp4
print(f"pose_list len: {len(pose_list)}")
result_demo = [frame.astype('uint8') for frame in result_demo]
result_pose_only = [frame.astype('uint8') for frame in result_pose_only]
result_pose_aug_only = [frame.astype('uint8') for frame in result_pose_aug_only]
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_demo, fps=fps)
clip.write_videofile(outfn, fps=fps, codec="libx264", audio=False, logger=None) # all.mp4
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_only, fps=fps)
clip.write_videofile(args.outfn_align_pose_video, fps=fps, codec="libx264", audio=False, logger=None) # single.mp4
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_aug_only, fps=fps)
clip.write_videofile(args.outfn_align_pose_video[:-4] + "_aug" + ".mp4", fps=fps, codec="libx264", audio=False, logger=None) # single_aug.mp4
print('pose align done')
def main():
parser = argparse.ArgumentParser()
# parser.add_argument('--detect_resolution', type=int, default=512, help='detect_resolution')
# parser.add_argument('--image_resolution', type=int, default=720, help='image_resolution')
parser.add_argument('--detect_resolution', type=int, default=1024, help='detect_resolution')
parser.add_argument('--image_resolution', type=int, default=720, help='image_resolution')
parser.add_argument("--yolox_config", type=str, default=f"{this_dir}/pose/config/yolox_l_8xb8-300e_coco.py")
parser.add_argument("--dwpose_config", type=str, default=f"{this_dir}/pose/config/dwpose-l_384x288.py")
parser.add_argument("--yolox_ckpt", type=str, default=f"{this_dir}/pretrained_weights/dwpose/yolox_l_8x8_300e_coco.pth")
parser.add_argument("--dwpose_ckpt", type=str, default=f"{this_dir}/pretrained_weights/dwpose/dw-ll_ucoco_384.pth")
parser.add_argument('--align_frame', type=int, default=0, help='the frame index of the video to align')
parser.add_argument('--max_frame', type=int, default=300, help='maximum frame number of the video to align')
parser.add_argument('--imgfn_refer', type=str, default="./assets/images/0.jpg", help='refer image path')
parser.add_argument('--vidfn', type=str, default="./assets/videos/0.mp4", help='Input video path')
parser.add_argument('--outfn_align_pose_video', type=str, default=None, help='output path of the aligned video of the refer img')
parser.add_argument('--outfn', type=str, default=None, help='Output path of the alignment visualization')
args = parser.parse_args()
# if not os.path.exists("./assets/poses/align"):
# # os.makedirs("./assets/poses/")
# os.makedirs("./assets/poses/align")
# os.makedirs("./assets/poses/align_demo")
img_name = os.path.basename(args.imgfn_refer).split('.')[0]
video_name = os.path.basename(args.vidfn).split('.')[0]
if args.outfn_align_pose_video is None:
args.outfn_align_pose_video = "./assets/poses/align/img_{}_video_{}.mp4".format(img_name, video_name)
if args.outfn is None:
args.outfn = "./assets/poses/align_demo/img_{}_video_{}.mp4".format(img_name, video_name)
os.makedirs(os.path.dirname(args.outfn), exist_ok=True)
os.makedirs(os.path.dirname(args.outfn_align_pose_video), exist_ok=True)
run_align_video_with_filterPose_translate_smooth(args)
if __name__ == '__main__':
main()