xtreme_s_xlsr_300m_fleurs_langid
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the GOOGLE/XTREME_S - FLEURS.ALL dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.7271
 - Accuracy Af Za: 0.3865
 - Accuracy Am Et: 0.8818
 - Accuracy Ar Eg: 0.9977
 - Accuracy As In: 0.9858
 - Accuracy Ast Es: 0.8362
 - Accuracy Az Az: 0.8386
 - Accuracy Be By: 0.4085
 - Accuracy Bn In: 0.9989
 - Accuracy Bs Ba: 0.2508
 - Accuracy Ca Es: 0.6947
 - Accuracy Ceb Ph: 0.9852
 - Accuracy Cmn Hans Cn: 0.9799
 - Accuracy Cs Cz: 0.5353
 - Accuracy Cy Gb: 0.9716
 - Accuracy Da Dk: 0.6688
 - Accuracy De De: 0.7807
 - Accuracy El Gr: 0.7692
 - Accuracy En Us: 0.9815
 - Accuracy Es 419: 0.9846
 - Accuracy Et Ee: 0.5230
 - Accuracy Fa Ir: 0.8462
 - Accuracy Ff Sn: 0.2348
 - Accuracy Fi Fi: 0.9978
 - Accuracy Fil Ph: 0.9564
 - Accuracy Fr Fr: 0.9852
 - Accuracy Ga Ie: 0.8468
 - Accuracy Gl Es: 0.5016
 - Accuracy Gu In: 0.973
 - Accuracy Ha Ng: 0.9163
 - Accuracy He Il: 0.8043
 - Accuracy Hi In: 0.9354
 - Accuracy Hr Hr: 0.3654
 - Accuracy Hu Hu: 0.8044
 - Accuracy Hy Am: 0.9914
 - Accuracy Id Id: 0.9869
 - Accuracy Ig Ng: 0.9360
 - Accuracy Is Is: 0.0217
 - Accuracy It It: 0.8
 - Accuracy Ja Jp: 0.7385
 - Accuracy Jv Id: 0.5824
 - Accuracy Ka Ge: 0.8611
 - Accuracy Kam Ke: 0.4184
 - Accuracy Kea Cv: 0.8692
 - Accuracy Kk Kz: 0.8727
 - Accuracy Km Kh: 0.7030
 - Accuracy Kn In: 0.9630
 - Accuracy Ko Kr: 0.9843
 - Accuracy Ku Arab Iq: 0.9577
 - Accuracy Ky Kg: 0.8936
 - Accuracy Lb Lu: 0.8897
 - Accuracy Lg Ug: 0.9253
 - Accuracy Ln Cd: 0.9644
 - Accuracy Lo La: 0.1580
 - Accuracy Lt Lt: 0.4686
 - Accuracy Luo Ke: 0.9922
 - Accuracy Lv Lv: 0.6498
 - Accuracy Mi Nz: 0.9613
 - Accuracy Mk Mk: 0.7636
 - Accuracy Ml In: 0.6962
 - Accuracy Mn Mn: 0.8462
 - Accuracy Mr In: 0.3911
 - Accuracy Ms My: 0.3632
 - Accuracy Mt Mt: 0.6188
 - Accuracy My Mm: 0.9705
 - Accuracy Nb No: 0.6891
 - Accuracy Ne Np: 0.8994
 - Accuracy Nl Nl: 0.9093
 - Accuracy Nso Za: 0.8873
 - Accuracy Ny Mw: 0.4691
 - Accuracy Oci Fr: 0.1533
 - Accuracy Om Et: 0.9512
 - Accuracy Or In: 0.5447
 - Accuracy Pa In: 0.8153
 - Accuracy Pl Pl: 0.7757
 - Accuracy Ps Af: 0.8105
 - Accuracy Pt Br: 0.7715
 - Accuracy Ro Ro: 0.4122
 - Accuracy Ru Ru: 0.9794
 - Accuracy Rup Bg: 0.9468
 - Accuracy Sd Arab In: 0.5245
 - Accuracy Sk Sk: 0.8624
 - Accuracy Sl Si: 0.0300
 - Accuracy Sn Zw: 0.8843
 - Accuracy So So: 0.8803
 - Accuracy Sr Rs: 0.0257
 - Accuracy Sv Se: 0.0145
 - Accuracy Sw Ke: 0.9199
 - Accuracy Ta In: 0.9526
 - Accuracy Te In: 0.9788
 - Accuracy Tg Tj: 0.9883
 - Accuracy Th Th: 0.9912
 - Accuracy Tr Tr: 0.7887
 - Accuracy Uk Ua: 0.0627
 - Accuracy Umb Ao: 0.7863
 - Accuracy Ur Pk: 0.0134
 - Accuracy Uz Uz: 0.4014
 - Accuracy Vi Vn: 0.7246
 - Accuracy Wo Sn: 0.4555
 - Accuracy Xh Za: 1.0
 - Accuracy Yo Ng: 0.7353
 - Accuracy Yue Hant Hk: 0.7985
 - Accuracy Zu Za: 0.4696
 - Loss: 1.3789
 - Loss Af Za: 2.6778
 - Loss Am Et: 0.4615
 - Loss Ar Eg: 0.0149
 - Loss As In: 0.0764
 - Loss Ast Es: 0.4560
 - Loss Az Az: 0.5677
 - Loss Be By: 1.9231
 - Loss Bn In: 0.0024
 - Loss Bs Ba: 2.4954
 - Loss Ca Es: 1.2632
 - Loss Ceb Ph: 0.0426
 - Loss Cmn Hans Cn: 0.0650
 - Loss Cs Cz: 1.9334
 - Loss Cy Gb: 0.1274
 - Loss Da Dk: 1.4990
 - Loss De De: 0.8820
 - Loss El Gr: 0.9839
 - Loss En Us: 0.0827
 - Loss Es 419: 0.0516
 - Loss Et Ee: 1.9264
 - Loss Fa Ir: 0.6520
 - Loss Ff Sn: 5.4283
 - Loss Fi Fi: 0.0109
 - Loss Fil Ph: 0.1706
 - Loss Fr Fr: 0.0591
 - Loss Ga Ie: 0.5174
 - Loss Gl Es: 1.2657
 - Loss Gu In: 0.0850
 - Loss Ha Ng: 0.3234
 - Loss He Il: 0.8299
 - Loss Hi In: 0.4190
 - Loss Hr Hr: 2.9754
 - Loss Hu Hu: 0.8345
 - Loss Hy Am: 0.0329
 - Loss Id Id: 0.0529
 - Loss Ig Ng: 0.2523
 - Loss Is Is: 6.5153
 - Loss It It: 0.8113
 - Loss Ja Jp: 1.3968
 - Loss Jv Id: 2.0009
 - Loss Ka Ge: 0.6162
 - Loss Kam Ke: 2.2192
 - Loss Kea Cv: 0.5567
 - Loss Kk Kz: 0.5592
 - Loss Km Kh: 1.7358
 - Loss Kn In: 0.1063
 - Loss Ko Kr: 0.1519
 - Loss Ku Arab Iq: 0.2075
 - Loss Ky Kg: 0.4639
 - Loss Lb Lu: 0.4454
 - Loss Lg Ug: 0.3764
 - Loss Ln Cd: 0.1844
 - Loss Lo La: 3.8051
 - Loss Lt Lt: 2.5054
 - Loss Luo Ke: 0.0479
 - Loss Lv Lv: 1.3713
 - Loss Mi Nz: 0.1390
 - Loss Mk Mk: 0.7952
 - Loss Ml In: 1.2999
 - Loss Mn Mn: 0.7621
 - Loss Mr In: 3.7056
 - Loss Ms My: 3.0192
 - Loss Mt Mt: 1.5520
 - Loss My Mm: 0.1514
 - Loss Nb No: 1.1194
 - Loss Ne Np: 0.4231
 - Loss Nl Nl: 0.3291
 - Loss Nso Za: 0.5106
 - Loss Ny Mw: 2.7346
 - Loss Oci Fr: 5.0983
 - Loss Om Et: 0.2297
 - Loss Or In: 2.5432
 - Loss Pa In: 0.7753
 - Loss Pl Pl: 0.7309
 - Loss Ps Af: 1.0454
 - Loss Pt Br: 0.9782
 - Loss Ro Ro: 3.5829
 - Loss Ru Ru: 0.0598
 - Loss Rup Bg: 0.1695
 - Loss Sd Arab In: 2.6198
 - Loss Sk Sk: 0.5583
 - Loss Sl Si: 6.0923
 - Loss Sn Zw: 0.4465
 - Loss So So: 0.4492
 - Loss Sr Rs: 4.7575
 - Loss Sv Se: 6.5858
 - Loss Sw Ke: 0.4235
 - Loss Ta In: 0.1818
 - Loss Te In: 0.0808
 - Loss Tg Tj: 0.0912
 - Loss Th Th: 0.0462
 - Loss Tr Tr: 0.7340
 - Loss Uk Ua: 4.6777
 - Loss Umb Ao: 1.4021
 - Loss Ur Pk: 8.4067
 - Loss Uz Uz: 4.3297
 - Loss Vi Vn: 1.1304
 - Loss Wo Sn: 2.2281
 - Loss Xh Za: 0.0009
 - Loss Yo Ng: 1.3345
 - Loss Yue Hant Hk: 1.0728
 - Loss Zu Za: 3.7279
 - Predict Samples: 77960
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
 - train_batch_size: 8
 - eval_batch_size: 1
 - seed: 42
 - distributed_type: multi-GPU
 - num_devices: 8
 - total_train_batch_size: 64
 - total_eval_batch_size: 8
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 2000
 - num_epochs: 5.0
 - mixed_precision_training: Native AMP
 
Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss | 
|---|---|---|---|---|
| 0.5296 | 0.26 | 1000 | 0.4016 | 2.6633 | 
| 0.4252 | 0.52 | 2000 | 0.5751 | 1.8582 | 
| 0.2989 | 0.78 | 3000 | 0.6332 | 1.6780 | 
| 0.3563 | 1.04 | 4000 | 0.6799 | 1.4479 | 
| 0.1617 | 1.3 | 5000 | 0.6679 | 1.5066 | 
| 0.1409 | 1.56 | 6000 | 0.6992 | 1.4082 | 
| 0.01 | 1.82 | 7000 | 0.7071 | 1.2448 | 
| 0.0018 | 2.08 | 8000 | 0.7148 | 1.1996 | 
| 0.0014 | 2.34 | 9000 | 0.6410 | 1.6505 | 
| 0.0188 | 2.6 | 10000 | 0.6840 | 1.4050 | 
| 0.0007 | 2.86 | 11000 | 0.6621 | 1.5831 | 
| 0.1038 | 3.12 | 12000 | 0.6829 | 1.5441 | 
| 0.0003 | 3.38 | 13000 | 0.6900 | 1.3483 | 
| 0.0004 | 3.64 | 14000 | 0.6414 | 1.7070 | 
| 0.0003 | 3.9 | 15000 | 0.7075 | 1.3198 | 
| 0.0002 | 4.16 | 16000 | 0.7105 | 1.3118 | 
| 0.0001 | 4.42 | 17000 | 0.7029 | 1.4099 | 
| 0.0 | 4.68 | 18000 | 0.7180 | 1.3658 | 
| 0.0001 | 4.93 | 19000 | 0.7236 | 1.3514 | 
Framework versions
- Transformers 4.18.0.dev0
 - Pytorch 1.10.1+cu111
 - Datasets 1.18.4.dev0
 - Tokenizers 0.11.6
 
- Downloads last month
 - 1