metadata
			datasets:
  - mozilla-foundation/common_voice_11_0
language:
  - ar
license: apache-2.0
metrics:
  - wer
tags:
  - whisper-event
  - generated_from_trainer
  - hf-asr-leaderboard
model-index:
  - name: Whisper Small ar - Zaid Alyafeai
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: ar
          split: test
          args: ar
        metrics:
          - type: wer
            value: 22.38383004278958
            name: Wer
Whisper Small ar - Zaid Alyafeai
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3509
 - Wer: 22.3838
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
 - train_batch_size: 8
 - eval_batch_size: 4
 - seed: 42
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 500
 - training_steps: 5000
 - mixed_precision_training: Native AMP
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | 
|---|---|---|---|---|
| 0.2944 | 0.2 | 1000 | 0.4355 | 30.6471 | 
| 0.2671 | 0.4 | 2000 | 0.3786 | 25.8539 | 
| 0.172 | 1.08 | 3000 | 0.3520 | 23.4573 | 
| 0.1043 | 1.28 | 4000 | 0.3542 | 23.3278 | 
| 0.0991 | 1.48 | 5000 | 0.3509 | 22.3838 | 
Framework versions
- Transformers 4.26.0.dev0
 - Pytorch 1.13.0+cu116
 - Datasets 2.7.1
 - Tokenizers 0.13.2