Gemma-2 2B Instruct fine-tuned on JSON dataset
This model is a Gemma-2 2b model fine-tuned to paraloq/json_data_extraction.
The model has been fine-tuned to extract data from a text according to a json schema.
Prompt
The prompt used during training is:
"""Below is a text paired with input that provides further context. Write JSON output that matches the schema to extract information.
### Input:
{input}
### Schema:
{schema}
### Response:
"""
Using the Model
You can use the model with the transformer library or with the wrapper from [unsloth] (https://unsloth.ai/blog/gemma2), which allows faster inference.
import torch
from unsloth import FastLanguageModel
# Required to avoid cache size exceeded
torch._dynamo.config.accumulated_cache_size_limit = 2048
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = f"bastienp/Gemma-2-2B-it-JSON-data-extration",
    max_seq_length = 2048,
    dtype = torch.float16,
    load_in_4bit = False,
    token = HF_TOKEN_READ,
)
Using the Quantized model (llama.cpp)
The model is supplied in GGFU format in 4bit and 8bit.
Example code with Llamacpp:
from llama_cpp import Llama
llm = Llama.from_pretrained(
    "bastienp/Gemma-2-2B-it-JSON-data-extration",
    filename="*Q4_K_M.gguf", #*Q8_K_M.gguf for the 8 bit version
    verbose=False,
)
The base model used for fine-tuning is google/gemma-2-2b-it. This repository is NOT affiliated with Google.
Gemma is provided under and subject to the Gemma Terms of Use found at ai.google.dev/gemma/terms.
- Developed by: bastienp
 - License: gemma
 - Finetuned from model : google/gemma-2-2b-it
 
- Downloads last month
 - 153
 
							Hardware compatibility
						Log In
								
								to view the estimation
4-bit
5-bit
8-bit
16-bit
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	🙋
			
		Ask for provider support