swin-brain-abnormalities-classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2461
  • Accuracy: 0.9273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.928 0.9892 23 0.6080 0.7705
0.508 1.9785 46 0.2402 0.9162
0.3178 2.9677 69 0.2121 0.9246
0.2338 4.0 93 0.2045 0.9363
0.1788 4.9892 116 0.2443 0.9296
0.1675 5.9785 139 0.1457 0.9430
0.155 6.9677 162 0.1708 0.9514
0.1316 8.0 186 0.1555 0.9531
0.1099 8.9892 209 0.1732 0.9531
0.1121 9.9785 232 0.1358 0.9581
0.1007 10.9677 255 0.2155 0.9514
0.0951 12.0 279 0.1506 0.9648
0.0841 12.9892 302 0.1921 0.9531
0.0778 13.9785 325 0.2041 0.9531
0.0768 14.8387 345 0.1909 0.9548

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
4
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for bombshelll/swin-brain-abnormalities-classification

Finetuned
(629)
this model

Space using bombshelll/swin-brain-abnormalities-classification 1