swin-brain-abnormalities-classification
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2461
- Accuracy: 0.9273
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 0.928 | 0.9892 | 23 | 0.6080 | 0.7705 |
| 0.508 | 1.9785 | 46 | 0.2402 | 0.9162 |
| 0.3178 | 2.9677 | 69 | 0.2121 | 0.9246 |
| 0.2338 | 4.0 | 93 | 0.2045 | 0.9363 |
| 0.1788 | 4.9892 | 116 | 0.2443 | 0.9296 |
| 0.1675 | 5.9785 | 139 | 0.1457 | 0.9430 |
| 0.155 | 6.9677 | 162 | 0.1708 | 0.9514 |
| 0.1316 | 8.0 | 186 | 0.1555 | 0.9531 |
| 0.1099 | 8.9892 | 209 | 0.1732 | 0.9531 |
| 0.1121 | 9.9785 | 232 | 0.1358 | 0.9581 |
| 0.1007 | 10.9677 | 255 | 0.2155 | 0.9514 |
| 0.0951 | 12.0 | 279 | 0.1506 | 0.9648 |
| 0.0841 | 12.9892 | 302 | 0.1921 | 0.9531 |
| 0.0778 | 13.9785 | 325 | 0.2041 | 0.9531 |
| 0.0768 | 14.8387 | 345 | 0.1909 | 0.9548 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 4
Model tree for bombshelll/swin-brain-abnormalities-classification
Base model
microsoft/swin-tiny-patch4-window7-224