Visualize in Weights & Biases

exceptions_exp2_swap_0.3_last_to_carry_1032

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5866
  • Accuracy: 0.3653

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 1032
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 80
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.8263 0.2915 1000 4.7561 0.2543
4.3556 0.5830 2000 4.2907 0.2979
4.1533 0.8745 3000 4.1087 0.3137
4.0097 1.1659 4000 4.0010 0.3234
3.9521 1.4574 5000 3.9255 0.3302
3.8928 1.7488 6000 3.8709 0.3358
3.7556 2.0402 7000 3.8230 0.3400
3.7544 2.3317 8000 3.7933 0.3429
3.7479 2.6232 9000 3.7640 0.3454
3.735 2.9147 10000 3.7387 0.3482
3.6496 3.2061 11000 3.7282 0.3502
3.6511 3.4976 12000 3.7073 0.3515
3.6628 3.7891 13000 3.6888 0.3533
3.5616 4.0805 14000 3.6832 0.3544
3.5725 4.3719 15000 3.6700 0.3557
3.5912 4.6634 16000 3.6564 0.3568
3.5847 4.9549 17000 3.6445 0.3581
3.5181 5.2463 18000 3.6455 0.3588
3.517 5.5378 19000 3.6369 0.3597
3.5497 5.8293 20000 3.6263 0.3605
3.4518 6.1207 21000 3.6255 0.3610
3.4895 6.4122 22000 3.6214 0.3613
3.4915 6.7037 23000 3.6125 0.3626
3.5125 6.9952 24000 3.6024 0.3631
3.433 7.2865 25000 3.6097 0.3630
3.4677 7.5780 26000 3.6010 0.3640
3.4745 7.8695 27000 3.5914 0.3645
3.3773 8.1609 28000 3.6035 0.3645
3.4187 8.4524 29000 3.5952 0.3649
3.4491 8.7439 30000 3.5866 0.3653
3.3357 9.0353 31000 3.5907 0.3658
3.3944 9.3268 32000 3.5890 0.3658
3.3953 9.6183 33000 3.5794 0.3664
3.4163 9.9098 34000 3.5711 0.3671
3.3529 10.2011 35000 3.5841 0.3666
3.3694 10.4926 36000 3.5781 0.3673
3.3886 10.7841 37000 3.5683 0.3678
3.3082 11.0755 38000 3.5818 0.3676
3.3497 11.3670 39000 3.5747 0.3677
3.3708 11.6585 40000 3.5697 0.3684
3.3746 11.9500 41000 3.5607 0.3688
3.3285 12.2414 42000 3.5739 0.3684
3.3466 12.5329 43000 3.5696 0.3689
3.3627 12.8243 44000 3.5617 0.3693
3.2851 13.1157 45000 3.5724 0.3685
3.314 13.4072 46000 3.5643 0.3691
3.3345 13.6987 47000 3.5575 0.3695
3.3462 13.9902 48000 3.5529 0.3701
3.2879 14.2816 49000 3.5685 0.3694
3.3282 14.5731 50000 3.5594 0.3699
3.3389 14.8646 51000 3.5524 0.3701
3.2624 15.1559 52000 3.5681 0.3699
3.2954 15.4474 53000 3.5608 0.3701
3.3077 15.7389 54000 3.5542 0.3706
3.2257 16.0303 55000 3.5629 0.3706
3.268 16.3218 56000 3.5614 0.3705
3.2886 16.6133 57000 3.5542 0.3710
3.3106 16.9048 58000 3.5465 0.3712
3.2317 17.1962 59000 3.5646 0.3705
3.2643 17.4877 60000 3.5554 0.3707
3.2942 17.7792 61000 3.5493 0.3716
3.2074 18.0705 62000 3.5614 0.3711
3.2424 18.3620 63000 3.5583 0.3712
3.2657 18.6535 64000 3.5530 0.3714
3.287 18.9450 65000 3.5433 0.3719
3.2333 19.2364 66000 3.5610 0.3710
3.2578 19.5279 67000 3.5527 0.3714
3.2633 19.8194 68000 3.5466 0.3720
3.1828 20.1108 69000 3.5630 0.3714
3.2285 20.4023 70000 3.5581 0.3714
3.2468 20.6938 71000 3.5478 0.3721
3.2602 20.9853 72000 3.5400 0.3726
3.2109 21.2766 73000 3.5569 0.3719
3.2269 21.5681 74000 3.5527 0.3721
3.2491 21.8596 75000 3.5441 0.3730
3.1702 22.1510 76000 3.5604 0.3717
3.2135 22.4425 77000 3.5526 0.3722
3.2283 22.7340 78000 3.5468 0.3725
3.1382 23.0254 79000 3.5586 0.3723
3.2013 23.3169 80000 3.5551 0.3722
3.2213 23.6083 81000 3.5502 0.3726
3.2379 23.8998 82000 3.5432 0.3731
3.1632 24.1912 83000 3.5579 0.3725
3.1967 24.4827 84000 3.5533 0.3725
3.2194 24.7742 85000 3.5446 0.3731
3.1466 25.0656 86000 3.5630 0.3723
3.1762 25.3571 87000 3.5580 0.3725
3.1993 25.6486 88000 3.5501 0.3728
3.2104 25.9401 89000 3.5378 0.3736
3.1599 26.2314 90000 3.5594 0.3727
3.1783 26.5229 91000 3.5543 0.3728
3.2142 26.8144 92000 3.5453 0.3732
3.125 27.1058 93000 3.5585 0.3726
3.1643 27.3973 94000 3.5565 0.3728
3.1817 27.6888 95000 3.5494 0.3734
3.1939 27.9803 96000 3.5401 0.3737
3.1343 28.2717 97000 3.5592 0.3727
3.1796 28.5632 98000 3.5520 0.3733
3.1855 28.8547 99000 3.5405 0.3740
3.1222 29.1460 100000 3.5605 0.3732
3.1475 29.4375 101000 3.5569 0.3733
3.1768 29.7290 102000 3.5468 0.3735
3.0977 30.0204 103000 3.5610 0.3730
3.1359 30.3119 104000 3.5589 0.3733
3.1579 30.6034 105000 3.5494 0.3737
3.1741 30.8949 106000 3.5429 0.3740
3.1262 31.1863 107000 3.5605 0.3731
3.1388 31.4778 108000 3.5541 0.3739
3.1571 31.7693 109000 3.5490 0.3739

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
18
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results