Visualize in Weights & Biases

exceptions_exp2_swap_0.3_last_to_carry_5039

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5498
  • Accuracy: 0.3741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 5039
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 80
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
4.8376 0.2915 1000 0.2542 4.7589
4.3508 0.5830 2000 0.2977 4.2982
4.1599 0.8745 3000 0.3137 4.1119
4.0058 1.1659 4000 0.3232 4.0022
3.9397 1.4574 5000 0.3305 3.9227
3.8862 1.7488 6000 0.3356 3.8669
3.7487 2.0402 7000 0.3400 3.8238
3.7661 2.3317 8000 0.3429 3.7931
3.7449 2.6232 9000 0.3457 3.7612
3.7305 2.9147 10000 0.3482 3.7342
3.636 3.2061 11000 0.3503 3.7234
3.6523 3.4976 12000 0.3518 3.7036
3.6479 3.7891 13000 0.3535 3.6866
3.5494 4.0805 14000 0.3549 3.6778
3.5719 4.3719 15000 0.3561 3.6679
3.5815 4.6634 16000 0.3575 3.6531
3.5827 4.9549 17000 0.3585 3.6418
3.5121 5.2463 18000 0.3592 3.6428
3.5172 5.5378 19000 0.3597 3.6341
3.5469 5.8293 20000 0.3607 3.6216
3.4552 6.1207 21000 0.3614 3.6244
3.4922 6.4122 22000 0.3619 3.6169
3.499 6.7037 23000 0.3626 3.6087
3.4927 6.9952 24000 0.3639 3.5962
3.4408 7.2865 25000 0.3633 3.6067
3.4523 7.5780 26000 0.3640 3.5957
3.4617 7.8695 27000 0.3650 3.5857
3.396 8.1609 28000 0.3648 3.5959
3.4334 8.4524 29000 0.3652 3.5926
3.4364 8.7439 30000 0.3661 3.5817
3.3397 9.0353 31000 0.3660 3.5855
3.3905 9.3268 32000 0.3661 3.5862
3.4009 9.6183 33000 0.3670 3.5789
3.4185 9.9098 34000 0.3677 3.5687
3.348 10.2011 35000 0.3672 3.5799
3.3779 10.4926 36000 0.3676 3.5705
3.3988 10.7841 37000 0.3681 3.5676
3.3056 11.0755 38000 0.3679 3.5776
3.345 11.3670 39000 0.3681 3.5718
3.3619 11.6585 40000 0.3689 3.5643
3.387 11.9500 41000 0.3694 3.5561
3.3217 12.2414 42000 0.3688 3.5691
3.3443 12.5329 43000 0.3691 3.5631
3.3572 12.8243 44000 0.3696 3.5544
3.282 13.1157 45000 0.3690 3.5689
3.3217 13.4072 46000 0.3696 3.5634
3.333 13.6987 47000 0.3703 3.5528
3.3499 13.9902 48000 0.3704 3.5476
3.2773 14.2816 49000 0.3698 3.5656
3.3086 14.5731 50000 0.3703 3.5580
3.343 14.8646 51000 0.3706 3.5467
3.2598 15.1559 52000 0.3702 3.5646
3.2774 15.4474 53000 0.3705 3.5598
3.3126 15.7389 54000 0.3711 3.5496
3.2012 16.0303 55000 0.3705 3.5610
3.2648 16.3218 56000 0.3711 3.5536
3.2782 16.6133 57000 0.3710 3.5503
3.3024 16.9048 58000 0.3720 3.5396
3.2318 17.1962 59000 0.3710 3.5579
3.2653 17.4877 60000 0.3715 3.5493
3.274 17.7792 61000 0.3722 3.5431
3.1885 18.0705 62000 0.3713 3.5596
3.2372 18.3620 63000 0.3717 3.5528
3.2585 18.6535 64000 0.3721 3.5450
3.279 18.9450 65000 0.3726 3.5389
3.2051 19.2364 66000 0.3718 3.5559
3.2422 19.5279 67000 0.3718 3.5507
3.2517 19.8194 68000 0.3726 3.5421
3.1962 20.1108 69000 0.3719 3.5548
3.2241 20.4023 70000 0.3721 3.5511
3.2393 20.6938 71000 0.3724 3.5465
3.2653 20.9853 72000 0.3729 3.5397
3.2169 21.2766 73000 0.3719 3.5543
3.2173 21.5681 74000 0.3726 3.5482
3.2412 21.8596 75000 0.3729 3.5411
3.1695 22.1510 76000 0.3725 3.5561
3.2119 22.4425 77000 0.3726 3.5493
3.2316 22.7340 78000 0.3731 3.5434
3.1426 23.0254 79000 0.3723 3.5559
3.1847 23.3169 80000 0.3729 3.5535
3.1668 23.6083 81000 3.5551 0.3725
3.2001 23.8998 82000 3.5479 0.3731
3.1768 24.1915 83000 3.5602 0.3723
3.1871 24.4830 84000 3.5519 0.3727
3.2136 24.7745 85000 3.5428 0.3733
3.1267 25.0659 86000 3.5576 0.3731
3.1684 25.3574 87000 3.5551 0.3727
3.2026 25.6489 88000 3.5472 0.3735
3.2202 25.9404 89000 3.5379 0.3737
3.1603 26.2317 90000 3.5586 0.3729
3.1896 26.5232 91000 3.5494 0.3735
3.1884 26.8147 92000 3.5417 0.3740
3.1285 27.1061 93000 3.5546 0.3731
3.1577 27.3976 94000 3.5499 0.3736
3.183 27.6891 95000 3.5481 0.3736
3.1974 27.9806 96000 3.5389 0.3741
3.1403 28.2720 97000 3.5531 0.3733
3.1545 28.5635 98000 3.5498 0.3738
3.165 28.8550 99000 3.5403 0.3740
3.119 29.1463 100000 3.5620 0.3732
3.1416 29.4378 101000 3.5507 0.3740
3.1652 29.7293 102000 3.5452 0.3741
3.0738 30.0207 103000 3.5542 0.3740
3.1227 30.3122 104000 3.5568 0.3737
3.1518 30.6037 105000 3.5512 0.3741
3.1593 30.8952 106000 3.5423 0.3742
3.1051 31.1866 107000 3.5578 0.3737
3.1409 31.4781 108000 3.5499 0.3742
3.1566 31.7695 109000 3.5498 0.3741

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
19
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results